Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes

Abstract

Almost all eukaryote life forms have now been placed within one of five to eight supra-kingdom-level groups using molecular phylogenetics1,2,3,4. The ‘phylum’ Hemimastigophora is probably the most distinctive morphologically defined lineage that still awaits such a phylogenetic assignment. First observed in the nineteenth century, hemimastigotes are free-living predatory protists with two rows of flagella and a unique cell architecture5,6,7; to our knowledge, no molecular sequence data or cultures are currently available for this group. Here we report phylogenomic analyses based on high-coverage, cultivation-independent transcriptomics that place Hemimastigophora outside of all established eukaryote supergroups. They instead comprise an independent supra-kingdom-level lineage that most likely forms a sister clade to the ‘Diaphoretickes’ half of eukaryote diversity (that is, the ‘stramenopiles, alveolates and Rhizaria’ supergroup (Sar), Archaeplastida and Cryptista, as well as other major groups). The previous ranking of Hemimastigophora as a phylum understates the evolutionary distinctiveness of this group, which has considerable importance for investigations into the deep-level evolutionary history of eukaryotic life—ranging from understanding the origins of fundamental cell systems to placing the root of the tree. We have also established the first culture of a hemimastigote (Hemimastix kukwesjijk sp. nov.), which will facilitate future genomic and cell-biological investigations into eukaryote evolution and the last eukaryotic common ancestor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Micrographs of studied hemimastigotes.
Fig. 2: Environmental SSU rRNA/rDNA reads assigned to Hemimastigophora.
Fig. 3: Phylogenetic placement of Hemimastigophora within eukaryotes.
Fig. 4: Summary of phylogenomic analyses and distribution of select genes across eukaryotes.

Similar content being viewed by others

Data availability

Raw reads of Spironema and Hemimastix transcriptomes are deposited in GenBank under accession codes SRR6032743 and SRR6032744, respectively. The assembled Hemimastix and Spironema transcriptomes, 351 individual-gene alignments (104 taxa), concatenated and trimmed alignments and tree-files for the 104-taxon, 61-taxon, 58-nLB, 58-nDP, 61-SR4 and 61-SFSR datasets, alignments and tree files for non-universal ancient genes, raw light microscopy and scanning electron microscopy images, and the SSU rDNA alignment and tree-files have been deposited in Dryad (https://doi.org/10.5061/dryad.n5g39d7). The partial SSU rDNA gene sequence of H. kukwesjijk strain BW2H is deposited in GenBank, under accession code MF682191. This publication has been registered with the ZooBank database (http://zoobank.org/) with the Life Science Identifier urn:lsid:zoobank.org:pub:4BA2A83C-8363-4EBE-A9C7-097CA470F9FB, and the name Hemimastix kukwesjijk has been deposited in Zoobank with the Life Science Identifier urn:lsid:zoobank.org:act:32E12332-A418-40E2-BF4C-F2BFD94BF4CF.

References

  1. Burki, F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016147 (2014).

    Article  Google Scholar 

  2. Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Article  Google Scholar 

  3. Burki, F. et al. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc. R. Soc. Lond. B 283, 20152802 (2016).

    Article  Google Scholar 

  4. Simpson, A. G. B. & Eglit, Y. in Encyclopedia of Evolutionary Biology Vol. 3 (ed. Kliman, R. M.) 344–360 (Elsevier, Amsterdam, 2016).

  5. Klebs, G. Flagellatenstudien (Akademische Verlags-Gesellschaft, Leipzig, 1893).

    Google Scholar 

  6. Foissner, W., Blatterer, H. & Foissner, I. The Hemimastigophora (Hemimastix amphikineta nov. gen., nov. spec.), a new protistan phylum from Gondwanian soils. Eur. J. Protistol. 23, 361–383 (1988).

    Article  CAS  Google Scholar 

  7. Foissner, I. & Foissner, W. Revision of the family Spironemidae Doflein (Protista, Hemimastigophora), with description of two new species, Spironema terricola n. sp. and Stereonema geiseri n. g., n. sp. J. Eukaryot. Microbiol. 40, 422–438 (1993).

    Article  Google Scholar 

  8. Yubuki, N. et al. Morphological identities of two different marine stramenopile environmental sequence clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and Patterson, 1990) gen. nov., comb. nov. J. Eukaryot. Microbiol. 62, 532–542 (2015).

    Article  Google Scholar 

  9. Brown, M. W. et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc. R. Soc. Lond. B 280, 20131755 (2013).

    Article  Google Scholar 

  10. Zhao, S. et al. Collodictyon—an ancient lineage in the tree of eukaryotes. Mol. Biol. Evol. 29, 1557–1568 (2012).

    Article  CAS  Google Scholar 

  11. Cavalier-Smith, T. et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol. Phylogenet. Evol. 81, 71–85 (2014).

    Article  Google Scholar 

  12. Cavalier-Smith, T. A revised six-kingdom system of life. Biol. Rev. Camb. Philos. Soc. 73, 203–266 (1998).

    Article  CAS  Google Scholar 

  13. Cavalier-Smith, T. in The Flagellates, The Systematics Association Special Volume Series 59 (eds Leadbeater, B. S. C. & Green, J. C.) 361–390 (Taylor & Francis, London, 2000).

  14. Cavalier-Smith, T., Lewis, R., Chao, E. E., Oates, B. & Bass, D. Morphology and phylogeny of Sainouron acronematica sp. n. and the ultrastructural unity of Cercozoa. Protist 159, 591–620 (2008).

    Article  CAS  Google Scholar 

  15. Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl Acad. Sci. USA 112, 8827–8834 (2015).

    Article  CAS  ADS  Google Scholar 

  16. de Mendoza, A. et al. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc. Natl Acad. Sci. USA 110, E4858–E4866 (2013).

    Article  Google Scholar 

  17. Fukasawa, Y., Oda, T., Tomii, K. & Imai, K. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 34, 1574–1586 (2017).

    Article  CAS  Google Scholar 

  18. Sebé-Pedrós, A., Grau-Bové, X., Richards, T. A. & Ruiz-Trillo, I. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol. Evol. 6, 290–305 (2014).

    Article  Google Scholar 

  19. Barlow, L. D., Nývltová, E., Aguilar, M., Tachezy, J. & Dacks, J. B. A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol. 16, 27 (2018).

    Article  Google Scholar 

  20. He, D. et al. An alternative root for the eukaryote tree of life. Curr. Biol. 24, 465–470 (2014).

    Article  CAS  Google Scholar 

  21. Katz, L. A., Grant, J. R., Parfrey, L. W. & Burleigh, J. G. Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst. Biol. 61, 653–660 (2012).

    Article  Google Scholar 

  22. Derelle, R. & Lang, B. F. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, 1277–1289 (2012).

    Article  CAS  Google Scholar 

  23. Derelle, R. et al. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl Acad. Sci. USA 112, E693–E699 (2015).

    Article  CAS  Google Scholar 

  24. Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005).

    Article  CAS  ADS  Google Scholar 

  25. Kolisko, M., Boscaro, V., Burki, F., Lynn, D. H. & Keeling, P. J. Single-cell transcriptomics for microbial eukaryotes. Curr. Biol. 24, R1081–R1082 (2014).

    Article  CAS  Google Scholar 

  26. Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714–717 (2011).

    Article  CAS  ADS  Google Scholar 

  27. Gawryluk, R. M. R. et al. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 26, 3053–3059 (2016).

    Article  CAS  Google Scholar 

  28. Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).

    Article  Google Scholar 

  29. Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).

    Article  CAS  Google Scholar 

  30. Krabberød, A. K. et al. Single cell transcriptomics, mega-phylogeny, and the genetic basis of morphological innovations in Rhizaria. Mol. Biol. Evol. 34, 1557–1573 (2017).

    Article  Google Scholar 

  31. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc.  9, 171–181 (2014).

    Article  CAS  Google Scholar 

  32. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  33. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  Google Scholar 

  34. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  Google Scholar 

  35. Huse, S. M. et al. VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinformatics 15, 41 (2014).

    Article  Google Scholar 

  36. de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    Article  Google Scholar 

  37. BioMarKs Consortium. BioMarKs data portal http://www.biomarks.eu (2011).

  38. Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 0091 (2017).

    Article  Google Scholar 

  39. Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M. & Gabrielsen, T. M. Strong seasonality of marine microbial eukaryotes in a high-arctic fjord (Isfjorden, in West Spitsbergen, Norway). Appl. Environ. Microbiol. 82, 1868–1880 (2016).

    Article  Google Scholar 

  40. Geisen, S. et al. Metatranscriptomic census of active protists in soils. ISME J. 9, 2178–2190 (2015).

    Article  CAS  Google Scholar 

  41. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  42. Berger, S. A. & Stamatakis, A. Aligning short reads to reference alignments and trees. Bioinformatics 27, 2068–2075 (2011).

    Article  CAS  Google Scholar 

  43. Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010).

    Article  Google Scholar 

  44. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  45. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  Google Scholar 

  46. Brown, M. W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 10, 427–433 (2018).

    Article  CAS  Google Scholar 

  47. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  Google Scholar 

  48. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article  Google Scholar 

  49. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  Google Scholar 

  50. Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    Article  CAS  Google Scholar 

  51. Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

    Article  Google Scholar 

  52. Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    Article  CAS  Google Scholar 

  53. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).

    Article  CAS  Google Scholar 

  54. Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).

    Article  CAS  Google Scholar 

  55. Brown, J. W., Walker, J. F. & Smith, S. A. Phyx: phylogenetic tools for unix. Bioinformatics 33, 1886–1888 (2017).

    Article  CAS  Google Scholar 

  56. Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  57. Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    Article  CAS  Google Scholar 

  58. Foissner, W. & Foissner, I. in An Illustrated Guide to the Protozoa 2nd edn (eds Lee, J. J. et al.) 1185–1186 (Society of Protozoologists and Allen Press, Lawrence, 2002).

  59. Zolffel, M. & Skibbe, O. Rediscovery of the multiflagellated protist Paramastix conifera Skuja 1948 (Protista incertae sedis). Nova Hedwigia 65, 443–452 (1997).

    Google Scholar 

Download references

Acknowledgements

The authors thank P. Li and P. Scallion (Dalhousie University) for assistance with electron microscopy, M. Dlutek (Dalhousie University) for Illumina sequencing, S. Geisen (Wageningen University) for providing parsed metatranscriptomic data, F. Mahé (CIRAD, Montpellier) for access to and parsing much of the V4 data, M. Brown (Mississippi State) for the seed phylogenomic dataset, A. Sebé-Pedrós (Weizmann Institute of Science) for the seed myosin alignments, M. Kolisko (Institute of Parasitology, Czech Academy of Sciences) for data handling scripts, B. Q. Minh (University of Vienna) for substantial help with phylogenomic analyses and troubleshooting in IQ-TREE, and R. Lewis (Nova Scotia Museum) and B. Francis for advice on Mi’kmaq tradition and language. This work was supported by CIFAR, NSERC grant 298366-2014 to A.G.B.S. and NSERC grant 2016-016792 to A.J.R.

Reviewer information

Nature thanks I. Ruiz-Trillo and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.E. isolated the organisms and cultivated H. kukwesjijk. Y.E. and G.L. undertook the microscopy. G.L. performed the single-cell transcriptomics. Y.E., G.L. and E.M.B. analysed the rDNA and environmental sequence data. G.L., L.E., Y.E. and A.G.B.S. assembled the phylogenomic datasets. G.L., L.E. and A.J.R. performed phylogenomic analyses. L.E. and Y.E. performed the gene presence analyses. G.L., Y.E. and A.G.B.S. wrote the manuscript, with input from all co-authors.

Corresponding author

Correspondence to Alastair G. B. Simpson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Light micrographs of studied hemimastigotes.

am, Spironema cf. multiciliatum (a) and Hemimastix kukwesjijk (bm) differential interference contrast micrographs of live cells. a, Two views of a Spironema cf. multiciliatum cell, with inset that details the posterior end. Note the nucleus (marked by ‘n’), the detail of one of the posterior flagella (marked by an arrow, in the inset) and small contractile vacuole (cv, in inset), as well as posterior tail (line in inset). b, c, Optical sections through one H. kukwesjijk cell, detailing the notches from which flagella emerge (arrowheads), a section through the capitulum (marked with a ‘c) and a conspicuous contractile vacuole in the cell posterior (shown in b). d, Surface view of one of the two thecal plates. eg, Optical cross-sections of different cells showing the capitulum (e), mid-body region with rotationally symmetrical plate overlap (f) and the posterior (g) with radial arrangement of the posterior-most flagella. hj, Pseudoseries that illustrates the feeding process, showing the progression of prey-ingestion stages. Note the widening capitulum and beginning of formation of the phagocytic vacuole. k, Same cell as in j, showing the anterior flagella curving forward to surround prey (seen especially in early feeding). l, m, Dividing cells, showing the diagonal symmetry of short new rows (nr) and longer old rows (or) of flagella, as well as the daughter nuclei (n). Scale bar, 10 μm.

Extended Data Fig. 2 Scanning electron microscopy images of H. kukwesjijk.

a, Feeding cell, general view (anterior to left; note the prey item attached to capitulum). b, Close-up of anterior end showing ingestion in progress at the capitulum. c, Discharged extrusomes (ex; triggered by the fixation process) along margin of the capitulum (compare to undischarged extrusomes in Fig. 1d). d, Dividing cells, with the left-most cell clearly showing the old row of full-length flagella (or) and the new row with short flagella (nr). Scale bars, 5 μm (a, d), 2 μm (b, c).

Extended Data Fig. 3 SSU rDNA phylogeny of eukaryotes.

Phylogeny inferred from 111 taxa and 1,252 sites under the GTR + Γ model in RAxML. Hemimastigophora—including H. kukwesjijk and Spironema cf. multiciliatum from this study—are shown in red. Colours of other sequence names correspond to the same taxonomic groupings as in Fig. 3. The sequence of Spumella sp. strain BW2S, the prey for H. kukwesjijk, is included and marked with an asterisk. The numbers on branches show bootstrap percentages (1,000 replicates; values below 50% not shown). Branches in grey are half their original length. This tree was the reference phylogeny for pplacer analyses shown in Fig. 2. Scale bar denotes 0.1 expected substitutions per site.

Extended Data Fig. 4 Unrooted phylogeny of eukaryotes, 104 taxa dataset.

Phylogeny inferred from 351 genes, using maximum likelihood under the LG + C60 + F + Γ model. The numbers on branches show ultrafast bootstrap approximation percentages, with filled circles denoting 100% support. The Carpediemonas branch is shown reduced by 1/3 of the original length for display purposes. Scale bar denotes 0.1 expected substitutions per site.

Extended Data Fig. 5 Unrooted phylogeny using 58-nLB dataset.

Phylogeny inferred from 351 genes, using maximum likelihood under the LG + C60 + F + Γ model. The numbers on branches show PMSF bootstrap percentages (bootstrap support PMSF; 200 true bootstrap replicates), then ultrafast bootstrap approximation percentages (1,000 replicates). Filled circles denote 100% support with both methods. Scale bar denotes 0.1 expected substitutions per site.

Extended Data Fig. 6 Unrooted phylogeny using 58-nDP dataset.

Phylogeny inferred from 351 genes, using maximum likelihood under the LG + C60 + F + Γ model. The numbers on branches show PMSF bootstrap percentages (bootstrap support PMSF; 100 true bootstrap replicates), then ultrafast bootstrap approximation percentages (1,000 replicates). Filled circles denote 100% support with both methods. The branches leading to Bodo, Diplonema and Tetrahymena are shown reduced by 1/3. Scale bar denotes 0.1 expected substitutions per site.

Extended Data Fig. 7 Unrooted phylogeny using 61-SR4 dataset of 61 taxa.

Phylogeny inferred from 351 genes, with amino acids recoded as four states, using maximum likelihood under the GTR + R6 + F model. The numbers on branches show bootstrap percentages (500 true bootstrap replicates). Filled circles represent 100% support. The branches leading to Bodo, Diplonema and Tetrahymena are shown reduced by 1/3. Scale bar denotes 0.1 expected substitutions per site.

Extended Data Fig. 8 Summary of 61-SFSR analysis.

Chart follows the support for several important bipartitions with the sequential removal of the fastest-evolving sites from the 61-taxon, 351-gene dataset. The support values are ultra-fast bootstrap approximation percentages (1,000 replicates) inferred using maximum likelihood under the LG + C60 + F + Γ-derived PSMF model using a guide tree pruned of hemimastigotes (PMSF-nHEMI, see Methods); these values are not directly comparable to those from the other illustrated analyses.

Supplementary information

Reporting Summary

Supplementary Table 1

Full listing of environmental sequences attributable to Hemimastigophora, with habitat and location data.

Supplementary Table 2

Taxa used in phylogenomic analyses, organized by major group, with gene- and site-coverage statistics, and sources of data identified.

Supplementary Table 3

Genes of potential deep evolutionary significance in eukaryotes, searched for in the single-cell transcriptomes of Spironema and Hemimastix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lax, G., Eglit, Y., Eme, L. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018). https://doi.org/10.1038/s41586-018-0708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0708-8

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing