Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Structural superlubricity and ultralow friction across the length scales

Abstract

Structural superlubricity, a state of ultralow friction and wear between crystalline surfaces, is a fundamental phenomenon in modern tribology that defines a new approach to lubrication. Early measurements involved nanometre-scale contacts between layered materials, but recent experimental advances have extended its applicability to the micrometre scale. This is an important step towards practical utilization of structural superlubricity in future technological applications, such as durable nano- and micro-electromechanical devices, hard drives, mobile frictionless connectors, and mechanical bearings operating under extreme conditions. Here we provide an overview of the field, including its birth and main achievements, the current state of the art and the challenges to fulfilling its potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major milestones in structural superlubricity research.
Fig. 2: Nanoscale structural superlubricity.
Fig. 3: Microscale superlubricity.
Fig. 4: Demonstrative applications of structural superlubricity at different length scales.

Similar content being viewed by others

References

  1. Dowson, D. History of Tribology 2nd edn (Professional Engineering Publishing, London, 1998).

  2. Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. The nonlinear nature of friction. Nature 430, 525–528 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bormuth, V., Varga, V., Howard, J. & Schäffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Klein, J. Repair or replacement — a joint perspective. Science 323, 47–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Bhushan, B. Principles and Applications of Tribology 2nd edn (Wiley & Sons, New York, 2013).

  6. Holmberg, K., Andersson, P. & Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).

    Article  Google Scholar 

  7. Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R. S., Erdemir, A. & Sumant, A. V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015). Experimental demonstration of large-scale multi-contact structural superlubricity.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Granick, S. Motions and relaxations of confined liquids. Science 253, 1374–1379 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Granick, S., Zhu, Y. & Lee, H. Slippery questions about complex fluids flowing past solids. Nat. Mater. 2, 221–227 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Raviv, U. & Klein, J. Fluidity of bound hydration layers. Science 297, 1540–1543 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Briscoe, W. H. et al. Boundary lubrication under water. Nature 444, 191–194 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lee, S. & Spencer, N. D. Sweet, hairy, soft, and slippery. Science 319, 575–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Pawlak, R. et al. Single-molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano 10, 713–722 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016). Experimental demonstration of nanoscale structural superlubricity in graphene nanoribbons on gold surfaces.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Sweeney, J. et al. Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys. Rev. Lett. 109, 155502 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Fajardo, O. Y., Bresme, F., Kornyshev, A. A. & Urbakh, M. Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5, 7698 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rapoport, L. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Skinner, J., Gane, N. & Tabor, D. Micro-friction of graphite. Nature 232, 195–196 (1971).

    ADS  CAS  Google Scholar 

  19. Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Erdemir, A., Eryilmaz, O. L. & Fenske, G. Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 18, 1987–1992 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Erdemir, A. & Donner, C. Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D 39, R311–R327 (2006).

    Article  CAS  Google Scholar 

  22. Rozman, M. G., Urbakh, M. & Klafter, J. Controlling chaotic frictional forces. Phys. Rev. E 57, 7340–7343 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Socoliuc, A. et al. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Lantz, M. A., Wiesmann, D. & Gotsmann, B. Dynamic superlubricity and the elimination of wear on the nanoscale. Nat. Nanotechnol. 4, 586–591 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Müser, M. H. Structural lubricity: role of dimension and symmetry. Europhys. Lett. 66, 97–103 (2004). Considerations of elasticity and contact dimension for structural superlubricity.

    Article  ADS  CAS  Google Scholar 

  26. Erdemir, A. & Martin, J.-M. (eds) Superlubricity (Elsevier, Amsterdam, 2007).

  27. Shinjo, K. & Hirano, M. Dynamics of friction — superlubric state. Surf. Sci. 283, 473–478 (1993). First computational study of crystalline commensuration effects on kinetic friction reduction and coining of the term ‘superlubricity’.

    Article  ADS  CAS  Google Scholar 

  28. Peyrard, M. & Aubry, S. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model. J. Phys. C 16, 1593–1608 (1983). First theoretical prediction of elimination of static friction in incommensurate contacts.

    CAS  Google Scholar 

  29. Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Prandtl, L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85–106 (1928).

    Article  MATH  Google Scholar 

  31. Tomlinson, G. A. CVI. A molecular theory of friction. Lond. Edinb. Dublin Phil. Mag. J. Sci. 7, 905–939 (1929).

    Article  CAS  Google Scholar 

  32. Frenkel, Y. & Kontorova, T. On the theory of plastic deformation and twinning. Phys. Z. Sowietunion 13, 1–10 (1938).

    CAS  MATH  Google Scholar 

  33. Bylinskii, A., Gangloff, D., Counts, I. & Vuletic, V. Observation of Aubry-type transition in finite atom chains via friction. Nat. Mater. 15, 717–721 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Sørensen, M. R., Jacobsen, K. W. & Stoltze, P. Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996).

    Article  ADS  Google Scholar 

  35. Ma, M., Benassi, A., Vanossi, A. & Urbakh, M. Critical length limiting superlow friction. Phys. Rev. Lett. 114, 055501 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Sharp, T. A., Pastewka, L. & Robbins, M. O. Elasticity limits structural superlubricity in large contacts. Phys. Rev. B 93, 121402 (2016).

    Article  ADS  CAS  Google Scholar 

  37. Dietzel, D., Brndiar, J., Štich, I. & Schirmeisen, A. Limitations of structural superlubricity: chemical bonds versus contact size. ACS Nano 11, 7642–7647 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  CAS  Google Scholar 

  39. Martin, J. M., Donnet, C., Le Mogne, T. & Epicier, T. Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583–10586 (1993).

    Article  ADS  CAS  Google Scholar 

  40. Sheehan, P. E. & Lieber, C. M. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158–1161 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004). First experimental demonstration of structural superlubricity at nanoscale layered material contacts.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012). First experimental demonstration of structural superlubricity in microscale graphitic contacts.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 8, 912–916 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Koren, E., Lörtscher, E., Rawlings, C., Knoll, A. W. & Duerig, U. Adhesion and friction in mesoscopic graphite contacts. Science 348, 679–683 (2015). Experimental demonstration of structural superlubricity in mesoscale graphitic contacts.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Liu, S.-W. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 8, 14029 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Consoli, L., Knops, H. J. F. & Fasolino, A. Onset of sliding friction in incommensurate systems. Phys. Rev. Lett. 85, 302–305 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Hod, O. Interlayer commensurability and superlubricity in rigid layered materials. Phys. Rev. B 86, 075444 (2012).

    Article  ADS  CAS  Google Scholar 

  48. Verhoeven, G. S., Dienwiebel, M. & Frenken, J. W. M. Model calculations of superlubricity of graphite. Phys. Rev. B 70, 165418 (2004).

    Article  ADS  CAS  Google Scholar 

  49. Filippov, A. E., Dienwiebel, M., Frenken, J. W. M., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008). Theoretical and experimental investigation of elimination of structural superlubricity due to contact reorientations.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Feng, X., Kwon, S., Park, J. Y. & Salmeron, M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Dietzel, D., Feldmann, M., Schwarz, U. D., Fuchs, H. & Schirmeisen, A. Scaling laws of structural lubricity. Phys. Rev. Lett. 111, 235502 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Müser, M. H. in Fundamentals of Friction and Wear on the Nanoscale (eds Gnecco, E. & Meyer, E.) 177–199 (Springer, Switzerland, 2007).

  53. de Wijn, A. S. (In)commensurability, scaling, and multiplicity of friction in nanocrystals and application to gold nanocrystals on graphite. Phys. Rev. B 86, 085429 (2012).

    Article  ADS  CAS  Google Scholar 

  54. Koren, E. & Duerig, U. Moiré scaling of the sliding force in twisted bilayer graphene. Phys. Rev. B 94, 045401 (2016).

    Article  ADS  CAS  Google Scholar 

  55. Koren, E. & Duerig, U. Superlubricity in quasicrystalline twisted bilayer graphene. Phys. Rev. B 93, 201404 (2016).

    Article  ADS  CAS  Google Scholar 

  56. Mandelli, D., Leven, I., Hod, O. & Urbakh, M. Sliding friction of graphene/hexagonal-boron nitride heterojunctions: a route to robust superlubricity. Sci. Rep. 7, 10851 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bohlein, T., Mikhael, J. & Bechinger, C. Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces. Nat. Mater. 11, 126–130 (2012).

    Article  ADS  CAS  Google Scholar 

  58. Vanossi, A., Manini, N. & Tosatti, E. Static and dynamic friction in sliding colloidal monolayers. Proc. Natl Acad. Sci. USA 109, 16429–16433 (2012); correction 109, 20774 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, H. et al. Superlubricity between MoS2 monolayers. Adv. Mater. 29, 1701474 (2017).

    Article  CAS  Google Scholar 

  60. Hod, O. The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14, 2376–2391 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Ward, M. D. Soft crystals in flatland: unraveling epitaxial growth. ACS Nano 10, 6424–6428 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Tersoff, J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Brenner, D. W. Tersoff-type potentials for carbon, hydrogen and oxygen. Mater. Res. Soc. Symp. Proc. 141, 59–64 (1988).

    Article  Google Scholar 

  64. Kolmogorov, A. N. & Crespi, V. H. Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett. 85, 4727–4730 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).

    Article  ADS  CAS  Google Scholar 

  66. Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Leven, I., Guerra, R., Vanossi, A., Tosatti, E. & Hod, O. Multiwalled nanotube faceting unravelled. Nat. Nanotechnol. 11, 1082–1086 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Leven, I., Maaravi, T., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theory Comput. 12, 2896–2905 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Colloquium: Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).

    Article  ADS  CAS  Google Scholar 

  70. Müser, M. H., Wenning, L. & Robbins, M. O. Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Zheng, X. et al. Robust ultra-low-friction state of graphene via moiré superlattice confinement. Nat. Commun. 7, 13204 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, J. et al. Observation of high-speed microscale superlubricity in graphite. Phys. Rev. Lett. 110, 255504 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Wang, W. et al. Measurement of the cleavage energy of graphite. Nat. Commun. 6, 7853 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Vu, C. C. et al. Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Phys. Rev. B 94, 081405 (2016).

    Article  ADS  CAS  Google Scholar 

  76. Liu, Z. et al. A graphite nanoeraser. Nanotechnology 22, 265706 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Ma, M. et al. Diffusion through bifurcations in oscillating nano- and microscale contacts: fundamentals and applications. Phys. Rev. X 5, 031020 (2015).

    Google Scholar 

  78. van Wijk, M. M., Dienwiebel, M., Frenken, J. W. M. & Fasolino, A. Superlubric to stick-slip sliding of incommensurate graphene flakes on graphite. Phys. Rev. B 88, 235423 (2013).

    Article  ADS  CAS  Google Scholar 

  79. Bonelli, F., Manini, N., Cadelano, E. & Colombo, L. Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70, 449–459 (2009).

    CAS  Google Scholar 

  80. Reguzzoni, M., Fasolino, A., Molinari, E. & Righi, M. C. Friction by shear deformations in multilayer graphene. J. Phys. Chem. C 116, 21104–21108 (2012).

    Article  CAS  Google Scholar 

  81. Gao, W. & Tkatchenko, A. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 114, 096101 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Ouyang, W., Ma, M., Zheng, Q. & Urbakh, M. Frictional properties of nanojunctions including atomically thin sheets. Nano Lett. 16, 1878–1883 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Annett, J. & Cross, G. L. W. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535, 271–275 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Kim, W. K. & Falk, M. L. Atomic-scale simulations on the sliding of incommensurate surfaces: the breakdown of superlubricity. Phys. Rev. B 80, 235428 (2009).

    Article  ADS  CAS  Google Scholar 

  85. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013). Theoretical prediction of robust structural superlubricity in layered material heterojunctions.

    Article  CAS  PubMed  Google Scholar 

  87. Ansari, N., Nazari, F. & Illas, F. Role of structural symmetry breaking in the structurally induced robust superlubricity of graphene and h-BN homo- and hetero-junctions. Carbon 96, 911–918 (2016).

    Article  CAS  Google Scholar 

  88. Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).

    Article  CAS  ADS  PubMed  Google Scholar 

  89. de Wijn, A. S., Fasolino, A., Filippov, A. E. & Urbakh, M. Low friction and rotational dynamics of crystalline flakes in solid lubrication. Eur. Phys. Lett. 95, 66002 (2011).

    Article  ADS  CAS  Google Scholar 

  90. Woods, C. R. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 7, 10800 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng, Q. et al. Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Zheng, Q. & Jiang, Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88, 045503 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Wijk, M. M. v., Schuring, A., Katsnelson, M. I. & Fasolino, A. Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite. 2D Mater. 2, 034010 (2015).

    Article  CAS  Google Scholar 

  96. Klemenz, A. et al. Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano Lett. 14, 7145–7152 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Wang, Y., Guo, J., Zhang, J. & Qin, Y. Ultralow friction regime from the in situ production of a richer fullerene-like nanostructured carbon in sliding contact. RSC Advances 5, 106476–106484 (2015).

    Article  CAS  ADS  Google Scholar 

  98. Deng, Z., Smolyanitsky, A., Li, Q., Feng, X.-Q. & Cannara, R. J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 11, 1032–1037 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Maaravi, T., Leven, I., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for homogeneous graphene and hexagonal boron nitride systems: reparametrization for many-body dispersion effects. J. Phys. Chem. C 121, 22826–22835 (2017).

    Article  CAS  Google Scholar 

  100. Urbakh, M. Friction: towards macroscale superlubricity. Nat. Nanotechnol. 8, 893–894 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Sniegowski, J. J. & de Boer, M. P. IC-compatible polysilicon surface micromachining. Annu. Rev. Mater. Sci. 30, 299–333 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

O.H. is grateful to the Israel Science Foundation (grant no. 1586/17), the Lise-Meitner Minerva Center for Computational Quantum Chemistry, the Center for Nanoscience and Nanotechnology at Tel-Aviv University, and The Naomi Foundation for their financial support. E.M. acknowledges support from the Swiss National Science Foundation, the Swiss Nanoscience Institute and COST Action MP1303. Q.Z. acknowledges financial support from NSFC (grant no. 11227202, 1147215), the National Basic Research Program of China (grant nos 2013CB934200 and 2010CB631005), SRFDP (grant no. 20130002110043), and the Cyrus Tang Foundation. M.U. acknowledges financial support from the Israel Science Foundation (grant no. 1141/18), COST Action MP1303, and the Center for Nanoscience and Nanotechnology at Tel-Aviv University. We thank E. Koren and A. Erdemir for sharing high-resolution versions of Fig. 3b and d, respectively.

Reviewer information

Nature thanks A. Erdemir, E. Riedo, A. Schirmeisen, S. Zapperi and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

O.H., E.M., Q.Z. and M.U. conceived the idea of writing this Perspective, devised its general structure, designed the figures, and contributed to the writing.

Corresponding authors

Correspondence to Oded Hod or Quanshui Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hod, O., Meyer, E., Zheng, Q. et al. Structural superlubricity and ultralow friction across the length scales. Nature 563, 485–492 (2018). https://doi.org/10.1038/s41586-018-0704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0704-z

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing