Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal prethermal dynamics of Bose gases quenched to unitarity

Abstract

Understanding strongly correlated phases of matter, such as the quark–gluon plasma and neutron stars, and in particular the dynamics of such systems, for example, following a Hamiltonian quench (a sudden change in some Hamiltonian parameter, such as the strength of interparticle interactions) is a fundamental challenge in modern physics. Ultracold atomic gases are excellent quantum simulators for these problems, owing to their tunable interparticle interactions and experimentally resolvable intrinsic timescales. In particular, they provide access to the unitary regime, in which the interactions are as strong as allowed by quantum mechanics. This regime has been extensively studied in Fermi gases1,2. The less-explored unitary Bose gases3,4,5,6,7,8,9,10,11 offer possibilities12 such as universal physics controlled solely by the gas density13,14 and new forms of superfluidity15,16,17. Here, through momentum- and time-resolved studies, we explore degenerate and thermal homogeneous Bose gases quenched to unitarity. In degenerate samples, we observe universal post-quench dynamics in agreement with the emergence of a prethermal state18,19,20,21,22,23,24 with a universal non-zero condensed fraction22,24. In thermal gases, the dynamic and thermodynamic properties generally depend on the gas density and the temperature, but we find that they can still be expressed in terms of universal dimensionless functions. Surprisingly, we find that the total quench-induced correlation energy is independent of the gas temperature. These measurements provide quantitative benchmarks and challenges for the theory of unitary Bose gases.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Dynamics of a degenerate Bose gas quenched to unitarity.
Fig. 2: Universal post-quench dynamics and the steady-state momentum distribution in the degenerate Bose gas.
Fig. 3: Thermal Bose gas quenched to unitarity.
Fig. 4: Universal dynamic and thermodynamic functions for the thermal Bose gas quenched to unitarity.

Data availability

The data that support the findings of this study are available in the Apollo repository (https://doi.org/10.17863/CAM.30242). Any additional information is available from the corresponding authors on reasonable request.

References

  1. Zwerger, W. (ed.) The BCS-BEC Crossover and the Unitary Fermi Gas (Springer, Berlin, 2011).

  2. Zwierlein, M. W. in Novel Superfluids Vol. 2 (eds Bennemann, K.-H. & Ketterson, J. B.) Ch. 18 (Oxford Univ. Press, Oxford, 2014).

  3. Navon, N. et al. Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas. Phys. Rev. Lett. 107, 135301 (2011).

    ADS  Article  Google Scholar 

  4. Rem, B. S. et al. Lifetime of the Bose gas with resonant interactions. Phys. Rev. Lett. 110, 163202 (2013).

    ADS  CAS  Article  Google Scholar 

  5. Fletcher, R. J., Gaunt, A. L., Navon, N., Smith, R. P. & Hadzibabic, Z. Stability of a Unitary Bose Gas. Phys. Rev. Lett. 111, 125303 (2013).

    ADS  Article  Google Scholar 

  6. Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A. & Jin, D. S. Universal dynamics of a degenerate unitary Bose gas. Nat. Phys. 10, 116–119 (2014).

    CAS  Article  Google Scholar 

  7. Eismann, U. et al. Universal loss dynamics in a unitary Bose gas. Phys. Rev. X 6, 021025 (2016).

    Google Scholar 

  8. Fletcher, R. J. et al. Two- and three-body contacts in the unitary Bose gas. Science 355, 377–380 (2017).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  9. Klauss, C. E. et al. Observation of Efimov molecules created from a resonantly interacting Bose gas. Phys. Rev. Lett. 119, 143401 (2017).

    ADS  Article  Google Scholar 

  10. Eigen, C. et al. Universal scaling laws in the dynamics of a homogeneous unitary Bose gas. Phys. Rev. Lett. 119, 250404 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  11. Fletcher, R. J. et al. Elliptic flow in a strongly interacting normal Bose gas. Phys. Rev. A 98, 011601 (2018).

    ADS  Article  Google Scholar 

  12. Chevy, F. & Salomon, C. Strongly correlated Bose gases. J. Phys. B 49, 192001 (2016).

    ADS  Article  Google Scholar 

  13. Cowell, S. et al. Cold Bose gases with large scattering lengths. Phys. Rev. Lett. 88, 210403 (2002).

    ADS  CAS  Article  Google Scholar 

  14. Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004).

    ADS  Article  Google Scholar 

  15. Radzihovsky, L., Park, J. & Weichman, P. B. Superfluid transitions in bosonic atom-molecule mixtures near a Feshbach resonance. Phys. Rev. Lett. 92, 160402 (2004).

    ADS  Article  Google Scholar 

  16. Romans, M. W. J., Duine, R. A., Sachdev, S. & Stoof, H. T. C. Quantum phase transition in an atomic Bose gas with a Feshbach resonance. Phys. Rev. Lett. 93, 020405 (2004).

    ADS  CAS  Article  Google Scholar 

  17. Piatecki, S. & Krauth, W. Efimov-driven phase transitions of the unitary Bose gas. Nat. Commun. 5, 3503 (2014).

    ADS  Article  Google Scholar 

  18. Berges, J., Borsányi, Sz. & Wetterich, C. Prethermalization. Phys. Rev. Lett. 93, 142002 (2004).

    ADS  CAS  Article  Google Scholar 

  19. Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    ADS  CAS  Article  Google Scholar 

  20. Yin, X. & Radzihovsky, L. Quench dynamics of a strongly interacting resonant Bose gas. Phys. Rev. A 88, 063611 (2013).

    ADS  Article  Google Scholar 

  21. Sykes, A. G. et al. Quenching to unitarity: quantum dynamics in a three-dimensional Bose gas. Phys. Rev. A 89, 021601 (2014).

    ADS  Article  Google Scholar 

  22. Kain, B. & Ling, H. Y. Nonequilibrium states of a quenched Bose gas. Phys. Rev. A 90, 063626 (2014).

    ADS  Article  Google Scholar 

  23. Rançon, A. & Levin, K. Equilibrating dynamics in quenched Bose gases: characterizing multiple time regimes. Phys. Rev. A 90, 021602 (2014).

    ADS  Article  Google Scholar 

  24. Yin, X. & Radzihovsky, L. Postquench dynamics and prethermalization in a resonant Bose gas. Phys. Rev. A 93, 033653 (2016).

    ADS  Article  Google Scholar 

  25. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  CAS  Article  Google Scholar 

  26. Efimov, V. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970).

    ADS  CAS  Article  Google Scholar 

  27. Kraemer, T. et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006).

    ADS  CAS  Article  Google Scholar 

  28. Smith, D. H., Braaten, E., Kang, D. & Platter, L. Two-body and three-body contacts for identical bosons near unitarity. Phys. Rev. Lett. 112, 110402 (2014).

    ADS  Article  Google Scholar 

  29. Comparin, T. & Krauth, W. Momentum distribution in the unitary Bose gas from first principles. Phys. Rev. Lett. 117, 225301 (2016).

    ADS  Article  Google Scholar 

  30. Colussi, V. E., Corson, J. P. & D’Incao, J. P. Dynamics of three-body correlations in quenched unitary Bose gases. Phys. Rev. Lett. 120, 100401 (2018).

    ADS  CAS  Article  Google Scholar 

  31. D’Incao, J. P., Wang, J. & Colussi, V. E. Efimov physics in quenched unitary Bose gases. Phys. Rev. Lett. 121, 023401 (2018).

    ADS  Article  Google Scholar 

  32. Tan, S. Energetics of a strongly correlated Fermi gas. Ann. Phys. 323, 2952–2970 (2008).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  33. Li, W. & Ho, T.-L. Bose gases near unitarity. Phys. Rev. Lett. 108, 195301 (2012).

    ADS  Article  Google Scholar 

  34. Prüfer, M. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature https://doi.org/10.1038/s41586-018-0659-0 (2018).

  35. Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature https://doi.org/10.1038/s41586-018-0667-0 (2018).

  36. Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    ADS  Article  Google Scholar 

  37. Eigen, C. et al. Observation of weak collapse in a Bose–Einstein condensate. Phys. Rev. X 6, 041058 (2016).

    Google Scholar 

Download references

Acknowledgements

We thank R. Fletcher, N. Navon and T. Hilker for discussions and comments on the manuscript. This work was supported by the Royal Society, EPSRC (grant numbers EP/N011759/1 and EP/P009565/1), ERC (QBox), AFOSR and ARO. R.L. acknowledges support from the EU Marie Curie programme (grant number MSCA-IF-2015 704832) and Churchill College, Cambridge. E.A.C. acknowledges hospitality and support from Trinity College, Cambridge.

Reviewer information

Nature thanks M. Kolodrubetz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.E., J.A.P.G. and R.L. collected the data. C.E. analysed the data and produced the figures. C.E., E.A.C., R.P.S. and Z.H. interpreted the data and wrote the manuscript.

Corresponding authors

Correspondence to Christoph Eigen or Zoran Hadzibabic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Extrapolation of \({\bar{{\boldsymbol{n}}}}_{{\boldsymbol{k}}}{{\boldsymbol{k}}}_{{\boldsymbol{n}}}^{{\bf{3}}}\) in a degenerate gas to lower k/kn.

Solid symbols show directly measured values (also shown in Fig. 2b), here combining the data for all three BEC densities. Open symbols show experimentally extrapolated values, for all three densities, as described in Methods. The solid line is the same as in Fig. 2b.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eigen, C., Glidden, J.A.P., Lopes, R. et al. Universal prethermal dynamics of Bose gases quenched to unitarity. Nature 563, 221–224 (2018). https://doi.org/10.1038/s41586-018-0674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0674-1

Keywords

  • Bose Gas
  • Thermal Gas
  • Universal Dimensionless Function
  • Ultracold Atomic Gases
  • Lower Hyperne Ground State

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing