Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anthropogenic influences on major tropical cyclone events

Abstract

There is no consensus on whether climate change has yet affected the statistics of tropical cyclones, owing to their large natural variability and the limited period of consistent observations. In addition, projections of future tropical cyclone activity are uncertain, because they often rely on coarse-resolution climate models that parameterize convection and hence have difficulty in directly representing tropical cyclones. Here we used convection-permitting regional climate model simulations to investigate whether and how recent destructive tropical cyclones would change if these events had occurred in pre-industrial and in future climates. We found that, relative to pre-industrial conditions, climate change so far has enhanced the average and extreme rainfall of hurricanes Katrina, Irma and Maria, but did not change tropical cyclone wind-speed intensity. In addition, future anthropogenic warming would robustly increase the wind speed and rainfall of 11 of 13 intense tropical cyclones (of 15 events sampled globally). Additional regional climate model simulations suggest that convective parameterization introduces minimal uncertainty into the sign of projected changes in tropical cyclone intensity and rainfall, which allows us to have confidence in projections from global models with parameterized convection and resolution fine enough to include tropical cyclones.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tropical cyclone tracks.
Fig. 2: Time series and boxplots of tropical cyclone maximum 10-m wind speed.
Fig. 3: Tropical cyclone rainfall composites.
Fig. 4: Probability density functions of tropical cyclone rainfall rates.

Similar content being viewed by others

Data availability

Simulation data are available at the National Energy Research Scientific Computing Center (NERSC) at http://portal.nersc.gov/cascade/TC/.

References

  1. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI). Billion-Dollar Weather and Climate Disasters https://www.ncdc.noaa.gov/billions/ (NOAA NCEI, 2018).

  2. Grossmann, I. & Morgan, M. G. Tropical cyclones, climate change, and scientific uncertainty: what do we know, what does it mean, and what should be done? Clim. Change 108, 543–579 (2011).

    Article  Google Scholar 

  3. Walsh, K. J. E. et al. Tropical cyclones and climate change. WIREs Clim. Chang. 7, 65–89 (2016).

    Article  Google Scholar 

  4. Sobel, A. H. et al. Human influence on tropical cyclone intensity. Science 353, 242–246 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Landsea, C. W., Vecchi, G. A., Bengtsson, L. & Knutson, T. R. Impact of duration thresholds on Atlantic tropical cyclone counts. J. Clim. 23, 2508–2519 (2010).

    Article  ADS  Google Scholar 

  6. Landsea, C. W., Harper, B. A., Hoarau, K. & Knaff, J. A. Can we detect trends in extreme tropical cyclones? Science 313, 452–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Vecchi, G. A. & Knutson, T. R. On estimates of historical north Atlantic tropical cyclone activity. J. Clim. 21, 3580–3600 (2008).

    Article  ADS  Google Scholar 

  8. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Klotzbach, P. J. Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett. 33, L10805 (2006).

    Article  Google Scholar 

  11. Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J. & Harper, B. A. A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett. 34, L04815 (2007).

  12. Landsea, C. W., Pielke, R. A., Mestas-Nunez, A. & Knaff, J. A. Atlantic basin hurricanes: indices of climatic changes. Clim. Change 42, 89–129 (1999).

    Article  Google Scholar 

  13. Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity: causes and implications. Science 293, 474–479 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Gray, W. M. Atlantic seasonal hurricane frequency. 1. El-Nino and 30-mb quasi-biennial oscillation influences. Mon. Weath. Rev. 112, 1649–1668 (1984).

    Article  ADS  Google Scholar 

  15. Vimont, D. J. & Kossin, J. P. The Atlantic Meridional Mode and hurricane activity. Geophys. Res. Lett. 34, L07709 (2007).

  16. Patricola, C. M., Saravanan, R. & Chang, P. The impact of the El Nino-Southern Oscillation and Atlantic Meridional Mode on seasonal Atlantic tropical cyclone activity. J. Clim. 27, 5311–5328 (2014).

    Article  ADS  Google Scholar 

  17. Patricola, C. M., Chang, P. & Saravanan, R. Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Nino. Nat. Geosci. 9, 155–160 (2016).

    Article  ADS  CAS  Google Scholar 

  18. Gualdi, S., Scoccimarro, E. & Navarra, A. Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J. Clim. 21, 5204–5228 (2008).

    Article  ADS  Google Scholar 

  19. Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A. & Held, I. M. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci. 1, 359–364 (2008).

    Article  ADS  CAS  Google Scholar 

  20. Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    Article  ADS  CAS  Google Scholar 

  21. Wehner, M. et al. Resolution dependence of future tropical cyclone projections of CAM5.1 in the US CLIVAR Hurricane Working Group idealized configurations. J. Clim. 28, 3905–3925 (2015).

    Article  ADS  Google Scholar 

  22. Wehner, M. F., Reed, K. A., Loring, B., Stone, D. & Krishnan, H. Changes in tropical cyclones under stabilized 1.5 °C and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols. Earth Syst. Dyn. 9, 187–195 (2018).

    Article  ADS  Google Scholar 

  23. Emanuel, K. A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).

    Article  ADS  Google Scholar 

  25. Knutson, T. R. & Tuleya, R. E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495 (2004).

    Article  ADS  Google Scholar 

  26. Bender, M. A. et al. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327, 454–458 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hill, K. A. & Lackmann, G. M. The impact of future climate change on TC intensity and structure: a downscaling approach. J. Clim. 24, 4644–4661 (2011).

    Article  ADS  Google Scholar 

  28. Knutson, T. R. et al. Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Clim. 26, 6591–6617 (2013).

    Article  ADS  Google Scholar 

  29. Walsh, K. J. E. et al. Hurricanes and climate: the U.S. CLIVAR Working Group on hurricanes. Bull. Am. Meteorol. Soc. 96, 997–1017 (2015).

    Article  ADS  Google Scholar 

  30. Villarini, G. et al. Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Clim. 27, 4622–4641 (2014).

    Article  ADS  Google Scholar 

  31. Scoccimarro, E. et al. Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Clim. 27, 4642–4654 (2014).

    Article  ADS  Google Scholar 

  32. Wright, D. B., Knutson, T. R. & Smith, J. A. Regional climate model projections of rainfall from US landfalling tropical cyclones. Clim. Dyn. 45, 3365–3379 (2015).

    Article  Google Scholar 

  33. Scoccimarro, E. et al. in Hurricanes and Climate Change (eds Collins, J. & Walsh, K.) 243–255 (Springer, Cham, 2017).

  34. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Risser, M. D. & Wehner, M. F. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during hurricane Harvey. Geophys. Res. Lett. 44, 12457–12464 (2017).

    Article  Google Scholar 

  36. van Oldenborgh, G. J. et al. Attribution of extreme rainfall from hurricane Harvey, August 2017. Environ. Res. Lett. 12, 124009 (2017).

    Article  ADS  Google Scholar 

  37. Wang, S. Y. et al. Quantitative attribution of climate effects on hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett. 13, 054014 (2018).

    Article  ADS  Google Scholar 

  38. Emanuel, K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc. Natl Acad. Sci. USA 114, 12681–12684 (2017).

    Article  ADS  CAS  Google Scholar 

  39. Gray, W. M. Global view of origin of tropical disturbances and storms. Mon. Weath. Rev. 96, 669–700 (1968).

    Article  Google Scholar 

  40. Huang, P., Lin, I. I., Chou, C. & Huang, R. H. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun. 6, 7188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Emanuel, K., Solomon, S., Folini, D., Davis, S. & Cagnazzo, C. Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Clim. 26, 2288–2301 (2013).

    Article  ADS  Google Scholar 

  42. Wing, A. A., Emanuel, K. & Solomon, S. On the factors affecting trends and variability in tropical cyclone potential intensity. Geophys. Res. Lett. 42, 8669–8677 (2015).

    Article  ADS  Google Scholar 

  43. Vecchi, G. A. & Soden, B. J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34, L08702 (2007).

  44. Kaplan, J. et al. Improvement in the Rapid Intensity Index by Incorporation of Inner-core Information. JHT final report. https://www.nhc.noaa.gov/jht/09-11reports/final_Kaplan_JHT11.pdf (NOAA, 2011).

  45. Timmermans, B., Patricola, C. M. & Wehner, M. F. Simulation and analysis of hurricane-driven extreme wave climate under two ocean warming scenarios. Oceanography 31, https://doi.org/10.5670/oceanog.2018.218 (2018).

  46. Feng, Y. et al. Rapid remote sensing assessment of impacts from hurricane Maria on forests of Puerto Rico. Preprint at https://peerj.com/preprints/26597/ (2018).

  47. Wehner, M. F., Zarzycki, C. & Patricola, C. M. in Hurricane Risk (eds Collins, J. & Walsh, K.) Ch. 12 (Springer, Cham, in the press).

  48. Lin, I. I., Pun, I. F. & Wu, C. C. Upper-ocean thermal structure and the western north Pacific category 5 typhoons. Part II: dependence on translation speed. Mon. Weath. Rev. 137, 3744–3757 (2009).

    Article  ADS  Google Scholar 

  49. Balaguru, K. et al. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl Acad. Sci. USA 109, 14343–14347 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Zarzycki, C. M. Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J. Clim. 29, 8589–8610 (2016).

    Article  ADS  Google Scholar 

  51. Li, H. & Sriver, R. L. Tropical cyclone activity in the high-resolution community earth system model and the impact of ocean coupling. J. Adv. Model. Earth Syst. 10, 165–186 (2018).

    Article  ADS  Google Scholar 

  52. Skamarock, W. C. & Klemp, J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  53. Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1058 (2010).

    Article  ADS  Google Scholar 

  54. Saha, S. et al. The NCEP Climate Forecast System Version 2. J. Clim. 27, 2185–2208 (2014).

    Article  ADS  Google Scholar 

  55. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  ADS  Google Scholar 

  56. Tsutsumi, Y., Mori, K., Hirahara, T., Ikegami, M. & Conway, T. J. Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases. GAW Report No. 184, https://www.wmo.int/pages/prog/arep/gaw/documents/TD_1473_GAW184_web.pdf (World Meteorological Organization, 2009).

  57. Bullister, J. L. Atmospheric Histories (1765-2015) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O. NDP-095. http://cdiac.ess-dive.lbl.gov/ftp/oceans/CFC_ATM_Hist/CFC_ATM_Hist_2015/ (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2015).

  58. Shutts, G. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131, 3079–3102 (2005).

    Article  ADS  Google Scholar 

  59. Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).

    Article  ADS  Google Scholar 

  60. Takayabu, I. et al. Climate change effects on the worst-case storm surge: a case study of typhoon Haiyan. Environ. Res. Lett. 10, 064011 (2015).

    Article  ADS  Google Scholar 

  61. Lackmann, G. M. Hurricane Sandy before 1900 and after 2100. Bull. Am. Meteorol. Soc. 96, 547–560 (2015).

    Article  ADS  Google Scholar 

  62. Ito, R., Takemi, T. & Arakawa, O. A possible reduction in the severity of typhoon wind in the northern part of Japan under global warming: a case study. Sci. Online Lett. Atmos. 12, 100–105 (2016).

    Google Scholar 

  63. Nakamura, R., Shibayama, T., Esteban, M. & Iwamoto, T. Future typhoon and storm surges under different global warming scenarios: case study of typhoon Haiyan (2013). Natural Hazards 82, 1645–1681 (2016).

    Article  Google Scholar 

  64. Takemi, T., Ito, R. & Arakawa, O. Effects of global warming on the impacts of Typhoon Mireille (1991) in the Kyushu and Tohoku regions. Hydrol. Res. Lett. 10, 81–87 (2016).

    Article  ADS  Google Scholar 

  65. Kanada, S. et al. A multimodel intercomparison of an intense typhoon in future, warmer climates by four 5-km-mesh models. J. Clim. 30, 6017–6036 (2017).

    Article  ADS  Google Scholar 

  66. Wehner, M. F. et al. Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Adv. Meteorol. 2010, 915303 (2010).

    Article  Google Scholar 

  67. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  68. Pall, P. et al. Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Clim. Extrem. 17, 1–6 (2017).

    Article  Google Scholar 

  69. Stone, D. A. et al. A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim. Extrem. 19, 10–19 (2018).

    Article  Google Scholar 

  70. Vial, J., Dufresne, J.-L. & Bony, S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 41, 3339–3362 (2013).

    Article  Google Scholar 

  71. Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39, L09712 (2012).

    Article  Google Scholar 

  72. Landsea, C. W. et al. in Hurricanes and Typhoons: Past, Present and Future (eds Murnane, R. J. & Liu, K.-B.) 177–221 (Columbia Univ. Press, New York, 2004).

  73. Landsea, C. W. & Franklin, J. L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weath. Rev. 141, 3576–3592 (2013).

    Article  ADS  Google Scholar 

  74. Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 91, 363–376 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program, under award number DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. We thank H. Krishnan for setting up access to the simulation data at NERSC.

Reviewer information

Nature thanks J. Manganello and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.M.P. and M.F.W. conceived the project and developed the methodology. C.M.P. performed the simulations, with climate perturbations from M.F.W., and analysed the data. C.M.P. wrote the manuscript with contributions from M.F.W.

Corresponding author

Correspondence to Christina M. Patricola.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Tropical cyclone tracks.

a, b, The observed hurricane track (black) with simulated tropical cyclone tracks from ten ensemble members (grey dashed lines) and the ensemble mean (grey solid line) of the historical simulation for hurricanes Irma (a) and Maria (b) at 4.5-km resolution.

Extended Data Fig. 2 Time series and boxplots of tropical cyclone minimum SLP.

ac, The time series of minimum SLP (hPa) from observations (black) and the ensemble mean of the pre-industrial (blue), historical (grey) and RCP8.5 (red) simulations of hurricane Katrina at 3-km resolution (a) and hurricanes Irma (b) and Maria (c) at 4.5-km resolution. df, Boxplots of minimum SLP (hPa) from the ten-member ensemble of pre-industrial (blue), historical (black) and RCP8.5 (red) simulations of hurricane Katrina at 3-km, 9-km and 27-km resolution (d), and of hurricanes Irma (e) and Maria (f) at 4.5-km resolution. The centre line denotes the median, box limits denote lower and upper quartiles, and whiskers denote the minimum and maximum. The observed minimum SLP is marked with a horizontal black line. Simulations that used convective parameterization are denoted by asterisks.

Extended Data Fig. 3 Tropical cyclone minimum SLP.

Heatmaps are shown of the ensemble-mean difference in minimum SLP (in hPa) between the historical and pre-industrial simulations and between the RCP4.5, RCP6.0 and RCP8.5 simulations and the historical simulation (blue/red), with minimum SLP from observations and the ensemble-mean historical simulation (yellow/magenta). Light grey denotes substantial differences between the simulated and the observed tropical cyclone tracks and dark grey denotes simulations that were not performed. *Changes significant at the 10% level; **changes significant at the 5% level. Simulations that used convective parameterization are denoted ‘P’.

Extended Data Fig. 4 Tropical cyclone rainfall composites.

ad, Rainfall rate (colour scale, in millimetres per hour) relative to the tropical cyclone centre and throughout the simulated tropical cyclone lifetime from the ensemble mean of the RCP6.0 minus historical simulation of hurricane Floyd (a) and the RCP8.5 minus historical simulation of cyclone Gafilo (b), typhoon Haiyan (c) and cyclone Yasi (d) at 4.5-km resolution. Contours denote the rainfall rate (in millimetres per hour) from the corresponding historical simulation. The axes show the number of model grid points from the tropical cyclone centre.

Extended Data Table 1 List of tropical cyclone events

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patricola, C.M., Wehner, M.F. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018). https://doi.org/10.1038/s41586-018-0673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0673-2

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing