Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium


Understanding the behaviour of isolated quantum systems far from equilibrium and their equilibration is one of the most pressing problems in quantum many-body physics1,2. There is strong theoretical evidence that sufficiently far from equilibrium a wide variety of systems—including the early Universe after inflation3,4,5,6, quark–gluon matter generated in heavy-ion collisions7,8,9, and cold quantum gases4,10,11,12,13,14—exhibit universal scaling in time and space during their evolution, independent of their initial state or microscale properties. However, direct experimental evidence is lacking. Here we demonstrate universal scaling in the time-evolving momentum distribution of an isolated, far-from-equilibrium, one-dimensional Bose gas, which emerges from a three-dimensional ultracold Bose gas by means of a strong cooling quench. Within the scaling regime, the time evolution of the system at low momenta is described by a time-independent, universal function and a single scaling exponent. The non-equilibrium scaling describes the transport of an emergent conserved quantity towards low momenta, which eventually leads to the build-up of a quasi-condensate. Our results establish universal scaling dynamics in an isolated quantum many-body system, which is a crucial step towards characterizing time evolution far from equilibrium in terms of universality classes. Universality would open the possibility of using, for example, cold-atom set-ups at the lowest energies to simulate important aspects of the dynamics of currently inaccessible systems at the highest energies, such as those encountered in the inflationary early Universe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cooling quench and late-time evolution.
Fig. 2: Universal scaling dynamics.
Fig. 3: Scaling exponents.
Fig. 4: Universal scaling function and spatially averaged observables.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Gogolin, C. & Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Piñeiro Orioli, A., Boguslavski, K. & Berges, J. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D 92, 025041 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Micha, R. & Tkachev, I. I. Relativistic turbulence: a long way from preheating to equilibrium. Phys. Rev. Lett. 90, 121301 (2003).

    ADS  Article  Google Scholar 

  6. 6.

    Moore, G. D. Condensates in relativistic scalar theories. Phys. Rev. D 93, 065043 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett. 114, 061601 (2015).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Baier, R., Mueller, A. H., Schiff, D. & Son, D. T. “Bottom-up” thermalization in heavy ion collisions. Phys. Lett. B 502, 51–58 (2001).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies. Phys. Rev. D 89, 074011 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Schole, J., Nowak, B. & Gasenzer, T. Critical dynamics of a two-dimensional superfluid near a nonthermal fixed point. Phys. Rev. A 86, 013624 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Svistunov, B. V. Highly nonequilibrium Bose condensation in a weakly interacting gas. J. Moscow Phys. Soc 1, 373–390 (1991).

    Google Scholar 

  12. 12.

    Schmidt, M., Erne, S., Nowak, B., Sexty, D. & Gasenzer, T. Non-thermal fixed points and solitons in a one-dimensional Bose gas. New J. Phys. 14, 075005 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    Chantesana, I., Piñeiro Orioli, A. & Gasenzer, T. Kinetic theory of non-thermal fixed points in a Bose gas. Preprint at (2018).

  14. 14.

    Deng, J., Schlichting, S., Venugopalan, R. & Wang, Q. Off-equilibrium infrared structure of self-interacting scalar fields: universal scaling, vortex-antivortex superfluid dynamics, and Bose-Einstein condensation. Phys. Rev. A 97, 053606 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (1941).

    ADS  MathSciNet  Google Scholar 

  17. 17.

    Sieberer, L. M., Huber, S. D., Altman, E. & Diehl, S. Dynamical critical phenomena in driven-dissipative systems. Phys. Rev. Lett. 110, 195301 (2013).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Navon, N. et al. Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Preprint at (2018).

  19. 19.

    del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: Topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    Article  Google Scholar 

  20. 20.

    Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347, 167–170 (2015).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Clark, L. W., Feng, L. & Chin, C. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science 354, 606–610 (2016).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  22. 22.

    Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994).

    ADS  Article  Google Scholar 

  23. 23.

    Calabrese, P. & Gambassi, A. Ageing properties of critical systems. J. Phys. A 38, R133–R139 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Berges, J., Borsányi, S. & Wetterich, C. Prethermalization. Phys. Rev. Lett. 93, 142002 (2004).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Chiocchetta, A., Gambassi, A., Diehl, S. & Marino, J. Dynamical crossovers in prethermal critical states. Phys. Rev. Lett. 118, 135701 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Smith, D. A. et al. Absorption imaging of ultracold atoms on atom chips. Opt. Express 19, 8471–8485 (2011).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Bücker, R. et al. Single-particle-sensitive imaging of freely propagating ultracold atoms. New J. Phys. 11, 103039 (2009).

    ADS  Article  Google Scholar 

  29. 29.

    Karl, M. & Gasenzer, T. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas. New J. Phys. 19, 093014 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Mazets, I. E., Schumm, T. & Schmiedmayer, J. Breakdown of integrability in a quasi-1D ultracold Bosonic gas. Phys. Rev. Lett. 100, 210403 (2008).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Li, C. et al. Dephasing and relaxation of bosons in 1D: Newton’s cradle revisited. Preprint at (2018).

  32. 32.

    Prüfer, M. et al. Observation of universal quantum dynamics far from equilibrium. Nature (2018).

  33. 33.

    Wilson, K. G. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Reichel, J. & Vuletic, V. Atom chips (John Wiley & Sons, Weinheim, 2011).

  35. 35.

    Gerbier, F. Quasi-1D Bose–Einstein condensates in the dimensional crossover regime. Europhys. Lett. 66, 771–777 (2004).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Blakie, P. B., Bradley, A. S., Davis, M. J., Ballagh, R. J. & Gardiner, C. W. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Richard, S. et al. Momentum spectroscopy of 1D phase fluctuations in Bose–Einstein condensates. Phys. Rev. Lett. 91, 010405 (2003).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Davis, M. J., Blakie, P. B., van Amerongen, A. H., van Druten, N. J. & Kheruntsyan, K. V. Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas. Phys. Rev. A 85, 031604 (2012).

    ADS  Article  Google Scholar 

Download references


We thank J. Brand, L. Carr, M. Karl, P. Kevrekidis, P. Kunkel, D. Linnemann, A. N. Mikheev, B. Nowak, M. K. Oberthaler, J. M. Pawlowski, A. Piñeiro Orioli, M. Prüfer, W. Rohringer, C. M. Schmied, M. Schmidt, J. Schole and H. Strobel for discussions. We thank T. Berrada, S. van Frank, J.-F. Schaff and T. Schumm for help with the experiment during data collection. This work was supported by the SFB 1225 ‘ISOQUANT’ and grant number GA677/7,8 financed by the German Research Foundation (DFG) and Austrian Science Fund (FWF), the ERC advanced grant QuantumRelax, the Helmholtz Association (HA216/EMMI), the EU (FET-Proactive grant AQuS, project number 640800) and Heidelberg University (CQD). S.E. acknowledges partial support through the EPSRC project grant (EP/P00637X/1). J.S., J.B. and T.G. acknowledge the hospitality of the Erwin Schrödinger Institut in the framework of their thematic programme ‘Quantum Paths’.

Reviewer information

Nature thanks M. Kolodrubetz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




S.E. performed the analysis, adapted the theory and wrote the paper, J.S. designed the experiment; R.B. conducted the experiment and initial data analysis. All authors contributed to interpreting the data and writing the manuscript.

Corresponding author

Correspondence to Jörg Schmiedmayer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Results of random-defect and quasi-condensate models.

The time evolution of the characteristic scales for the experimental data presented in Fig. 4a (initial condition 1) are shown. The resulting temperature T (blue) and defect density ns (red) are shown in the upper panel for the full time evolution. The defect width for the random-defect model is fixed to ξs = 0.087 μm, determined by the mean over the first 25 ms of the evolution. The defect density within the scaling region shows a power-law dependence consistent with the exponent β of the scaling evolution reported in the main text. For later times deviations occur, signalling the end of the scaling region. The quality of the model fit is depicted in the lower panel (black squares), where positive and negative values favour the random-defect and quasi-condensate models, respectively. The random-defect model is strongly preferred for the first roughly 100 ms, after which the system converges to a thermal quasi-condensate within about 400 ms. The absolute values of the reduced χ2 for the random-defect (RD) model are about 1 and 5 for early and late times, respectively; those for the quasi-condensate (QC) model are about 25 and 1.

Extended Data Fig. 2 Rescaling analysis for different initial conditions.

ac, Original (left) and rescaled (right) single-particle momentum distribution n(kt) for different initial conditions (ac correspond to initial conditions 1–3 in Fig. 4a). Each distribution is normalized by the time-dependent atom number N(t) and the time is encoded in the colour scale. The grey dashed vertical lines indicate the scaling regime in k. The scaling exponents α ≈ β and the deviation between them Δαβ = α − β are in excellent agreement with the mean values reported in the main text. We note that here we compare the data for the full experimental resolution in k. The distribution at the reference time t0 = 4.7 ms is given by the grey line; its width indicates the 95% confidence interval.

Extended Data Fig. 3 Likelihood function for different initial conditions.

ac, Two-dimensional likelihood functions (colour scales) and marginal-likelihood functions (top and right) for different initial conditions (ac correspond to initial conditions 1–3 in Fig. 4a). A clear peak at non-zero α ≈ β is visible for each realization, whereas the deviation between the two exponents is Δαβ = α − β ≈ 0. For scan 2 (b), a small condensate may have been present before the quench, which led to the larger extent of the likelihood function. Gaussian fits are in excellent agreement with the marginal-likelihood functions and determine the error of the scaling exponents reported in Extended Data Fig. 2.

Extended Data Fig. 4 Time evolution of scaling exponents for different initial conditions.

ac, Scaling exponents α ≈ β (blue) and deviation between the two exponents Δαβ = α − β (red) for different initial conditions (ac correspond to initial conditions 1–3 in Fig. 4a), determined from the likelihood function for each reference time t0, are in good agreement with the predicted mean (black solid and dashed lines). The error bars denote the standard deviation obtained from a Gaussian fit to the marginal-likelihood function at each reference time separately.

Extended Data Fig. 5 Spatially averaged observables for different initial conditions.

ac, Time evolution of the fraction of particles in the scaling region \(\bar{N}\propto {(t/{t}_{0})}^{{\Delta }_{\alpha \beta }}\) (red) and the mean kinetic energy per particle in the scaling region \({\bar{M}}_{2}\propto {(t/{t}_{0})}^{-2\beta }\) (blue) for different initial conditions (ac correspond to initial conditions 1–3 in Fig. 4a). Within the scaling region (grey-shaded areas), \(\bar{N}\) is approximately conserved. The solid black lines are the approximately conserved value and scaling solutions (5). The error bars indicate the 95% confidence interval.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erne, S., Bücker, R., Gasenzer, T. et al. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225–229 (2018).

Download citation


  • Bose Gas
  • Universal Dynamic Scaling
  • Scaling Exponent
  • Momentum Distribution
  • Cold Quantum Gases

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing