Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergence of multi-body interactions in a fermionic lattice clock

Abstract

Alkaline-earth atoms have metastable ‘clock’ states with minute-long optical lifetimes, high-spin nuclei and SU(N)-symmetric interactions, making them powerful platforms for atomic clocks1, quantum information processing2 and quantum simulation3. Few-particle systems of such atoms provide opportunities to observe the emergence of complex many-body phenomena with increasing system size4. Multi-body interactions among particles are emergent phenomena, which cannot be broken down into sums over underlying pairwise interactions. They could potentially be used to create exotic states of quantum matter5,6, but have yet to be explored in ultracold fermions. Here we create arrays of isolated few-body systems in an optical clock based on a three-dimensional lattice of fermionic 87Sr atoms. We use high-resolution clock spectroscopy to directly observe the onset of elastic and inelastic multi-body interactions among atoms. We measure the frequency shifts of the clock transition for varying numbers of atoms per lattice site, from n = 1 to n = 5, and observe nonlinear interaction shifts characteristic of elastic multi-body effects. These measurements, combined with theory, elucidate an emergence of SU(N)-symmetric multi-body interactions, which are unique to fermionic alkaline-earth atoms. To study inelastic multi-body effects, we use these frequency shifts to isolate n-occupied sites in the lattice and measure the corresponding lifetimes of the clock states. This allows us to access the short-range few-body physics without experiencing the systematic effects that are encountered in a bulk gas. The lifetimes that we measure in the isolated few-body systems agree very well with numerical predictions based on a simple model for the interatomic potential, suggesting a universality in ultracold collisions. By connecting these few-body systems through tunnelling, the favourable energy and timescales of the interactions will allow our system to be used for studies of high-spin quantum magnetism7,8 and the Kondo effect3,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Two-orbital interactions in a three-dimensional lattice and experimental sequence.
Fig. 2: Clock spectroscopy of a ten-component Fermi gas in a three-dimensional lattice.
Fig. 3: Effective multi-body clock shifts.
Fig. 4: Three-body loss rate and occupation-number-dependent lifetime.

Data availability

The data that support the findings of this study are available within the paper.

References

  1. 1.

    Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Daley, A. J. Quantum computing and quantum simulation with group-II atoms. Quantum Inform. Process. 10, 865–884 (2011).

    Article  Google Scholar 

  3. 3.

    Cazalilla, M. A. & Rey, A. M. Ultracold Fermi gases with emergent SU(N) symmetry. Rep. Prog. Phys. 77, 124401 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Wenz, A. N. et al. From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457–460 (2013).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Fradkin, E. H., Nayak, C., Tsvelik, A. & Wilczek, F. A Chern-Simons effective field theory for the Pfaffian quantum Hall state. Nucl. Phys. B 516, 704–718 (1998).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Büchler, H. P., Micheli, A. & Zoller, P. Three-body interactions with cold polar molecules. Nat. Phys. 3, 726–731 (2007).

    Article  Google Scholar 

  7. 7.

    Zhang, X. et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science 345, 1467–1473 (2014).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Gorshkov, A. V. et al. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys. 6, 289–295 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Riegger, L. et al. Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions. Phys. Rev. Lett. 120, 143601 (2018).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Taie, S., Yamazaki, R., Sugawa, S. & Takahashi, Y. An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys. 8, 825–830 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Hofrichter, C. et al. Direct probing of the Mott crossover in the SU(N) Fermi-Hubbard model. Phys. Rev. X 6, 021030 (2016).

    Google Scholar 

  12. 12.

    Scazza, F. et al. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys. 10, 779–784 (2014); corrigendum 11, 514 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Cappellini, G. et al. Direct observation of coherent interorbital spin-exchange dynamics. Phys. Rev. Lett. 113, 120402 (2014).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Höfer, M. et al. Observation of an orbital interaction-induced Feshbach resonance in 173Yb. Phys. Rev. Lett. 115, 265302 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Pagano, G. et al. Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance. Phys. Rev. Lett. 115, 265301 (2015).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Hammer, H.-W., Nogga, A. & Schwenk, A. Colloquium: Three-body forces: from cold atoms to nuclei. Rev. Mod. Phys. 85, 197–217 (2013).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Johnson, P. R., Blume, D., Yin, X. Y., Flynn, W. F. & Tiesinga, E. Effective renormalized multi-body interactions of harmonically confined ultracold neutral bosons. New J. Phys. 14, 053037 (2012); corrigendum 20, 079501 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Will, S. et al. Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465, 197–201 (2010).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Mark, M. J. et al. Precision measurements on a tunable Mott insulator of ultracold atoms. Phys. Rev. Lett. 107, 175301 (2011).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Ferlaino, F. et al. Efimov resonances in ultracold quantum gases. Few-Body Syst. 51, 113–133 (2011).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Fletcher, R. J. et al. Two- and three-body contacts in the unitary Bose gas. Science 355, 377–380 (2017).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  22. 22.

    Greene, C. H., Giannakeas, P. & Pérez-Ríos, J. Universal few-body physics and cluster formation. Rev. Mod. Phys. 89, 035006 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    D’Incao, J. P. Few-body physics in resonantly interacting ultracold quantum gases. J. Phys. B 51, 043001 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Wolf, J. et al. State-to-state chemistry for three body recombination in an ultracold rubidium gas. Science 358, 921–924 (2017).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Marti, G. E. et al. Imaging optical frequencies with 100µHz precision and 1.1µm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Kato, S. et al. Laser spectroscopic probing of coexisting superfluid and insulating states of an atomic Bose–Hubbard system. Nat. Commun. 7, 11341 (2016).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Zang, X.-P., Yang, M., Ozaydin, F., Song, W. & Cao, Z.-L. Generating multiatom entangled W states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Martinez de Escobar, Y. N. et al. Two-photon photoassociative spectroscopy of ultracold 88Sr. Phys. Rev. A 78, 062708 (2008).

    ADS  Article  Google Scholar 

  31. 31.

    Burt, E. A. et al. Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay. Phys. Rev. Lett. 79, 337–340 (1997).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Söding, J. et al. Three-body decay of a rubidium Bose-Einstein condensate. Appl. Phys. B 69, 257–261 (1999).

    ADS  Article  Google Scholar 

  33. 33.

    Wang, J., D’Incao, J. P., Wang, Y. & Greene, C. H. Universal three-body recombination via resonant d-wave interactions. Phys. Rev. A 86, 062511 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge technical contributions from W. Milner, E. Oelker, J. Robinson, L. Sonderhouse and W. Zhang, and discussions with T. Bothwell, S. Bromley, C. Kennedy, D. Kedar, S. Kolkowitz, M. D. Lukin, A. Safavi-Naini and C. Sanner. This work was supported by NIST, DARPA, W911NF-16-1-0576 through ARO, AFOSR-MURI, AFOSR, NSF-1734006 and NASA. A.G. is supported by a postdoctoral fellowship from the Japan Society for the Promotion of Science and G.E.M. is supported by a postdoctoral fellowship from the National Research Council. J.P.D. acknowledges support from NSF Grant PHY-1607204.

Author information

Affiliations

Authors

Contributions

A.G., R.B.H., G.E.M., S.L.C. and J.Y. contributed to the experiments. M.A.P., P.S.J., J.P.D. and A.M.R. contributed to the development of the theoretical model. All authors discussed the results, contributed to the data analysis and worked together on the manuscript.

Corresponding authors

Correspondence to A. Goban or J. Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains detailed discussions of low-energy effective multi-body theory, occupation number dependence of three-body lifetime, extracting free-space scattering lengths and calculations of three-body lifetimes based on a universal van der Waals model. It also includes Supplementary Figure 1 showing trap-depth dependence of multi-body clock shifts. The calculated shifts from the three-body theory show good agreement with the experimental data in the wide range of the mean trap depths.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goban, A., Hutson, R.B., Marti, G.E. et al. Emergence of multi-body interactions in a fermionic lattice clock. Nature 563, 369–373 (2018). https://doi.org/10.1038/s41586-018-0661-6

Download citation

Keywords

  • Multi-body Effects
  • Station Clock
  • Three-body Loss
  • Nuclear Spin Degrees
  • High Motivation Condition

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links