Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of universal dynamics in a spinor Bose gas far from equilibrium


Predicting the dynamics of quantum systems far from equilibrium represents one of the most challenging problems in theoretical many-body physics1,2. While the evolution of a many-body system is in general intractable in all its details, relevant observables can become insensitive to microscopic system parameters and initial conditions. This is the basis of the phenomenon of universality. Far from equilibrium, universality is identified through the scaling of the spatio-temporal evolution of the system, captured by universal exponents and functions. Theoretically, this has been studied in examples as different as the reheating process in inflationary Universe cosmology3,4, the dynamics of nuclear collision experiments described by quantum chromodynamics5,6, and the post-quench dynamics in dilute quantum gases in non-relativistic quantum field theory7,8,9,10,11. However, an experimental demonstration of such scaling evolution in space and time in a quantum many-body system has been lacking. Here we observe the emergence of universal dynamics by evaluating spatially resolved spin correlations in a quasi-one-dimensional spinor Bose–Einstein condensate12,13,14,15,16. For long evolution times we extract the scaling properties from the spatial correlations of the spin excitations. From this we find the dynamics to be governed by an emergent conserved quantity and the transport of spin excitations towards low momentum scales. Our results establish an important class of non-stationary systems whose dynamics is encoded in time-independent scaling exponents and functions, signalling the existence of non-thermal fixed points10,17,18. We confirm that the non-thermal scaling phenomenon involves no fine-tuning of parameters, by preparing different initial conditions and observing the same scaling behaviour. Our analogue quantum simulation approach provides the basis with which to reveal the underlying mechanisms and characteristics of non-thermal universality classes. One may use this universality to learn, from experiments with ultracold gases, about fundamental aspects of dynamics studied in cosmology and quantum chromodynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Universal dynamics and experimental procedure.
Fig. 2: Scaling in space and time at a non-thermal fixed point.
Fig. 3: Characterization of the scaling regime.
Fig. 4: Robustness of universal dynamics at a non-thermal fixed point.

Data availability

The data presented in this paper are available from the corresponding author upon reasonable request.


  1. 1.

    Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Kofman, L., Linde, A. & Starobinsky, A. A. Reheating after inflation. Phys. Rev. Lett. 73, 3195–3198 (1994).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Micha, R. & Tkachev, I. I. Relativistic turbulence: a long way from preheating to equilibrium. Phys. Rev. Lett. 90, 121301 (2003).

    ADS  Article  Google Scholar 

  5. 5.

    Baier, R., Mueller, A. H., Schiff, D. & Son, D. “Bottom-up” thermalization in heavy ion collisions. Phys. Lett. B 502, 51–58 (2001).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies. Phys. Rev. D 89, 074011 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Lamacraft, A. Quantum quenches in a spinor condensate. Phys. Rev. Lett. 98, 160404 (2007).

    ADS  Article  Google Scholar 

  8. 8.

    Barnett, R., Polkovnikov, A. & Vengalattore, M. Prethermalization in quenched spinor condensates. Phys. Rev. A 84, 023606 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Hofmann, J., Natu, S. S. & Das Sarma, S. Coarsening dynamics of binary Bose condensates. Phys. Rev. Lett. 113, 095702 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Piñeiro Orioli, A., Boguslavski, K. & Berges, J. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D 92, 025041 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Williamson, L. A. & Blakie, P. B. Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate. Phys. Rev. Lett. 116, 025301 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Kronjäger, J., Becker, C., Soltan-Panahi, P., Bongs, K. & Sengstock, K. Spontaneous pattern formation in an antiferromagnetic quantum gas. Phys. Rev. Lett. 105, 090402 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Bookjans, E. M., Vinit, A. & Raman, C. Quantum phase transition in an antiferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Lett. 107, 195306 (2011).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    De, S. et al. Quenched binary Bose–Einstein condensates: spin-domain formation and coarsening. Phys. Rev. A 89, 033631 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Nicklas, E. et al. Observation of scaling in the dynamics of a strongly quenched quantum gas. Phys. Rev. Lett. 115, 245301 (2015).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).

    ADS  Article  Google Scholar 

  18. 18.

    Nowak, B., Sexty, D. & Gasenzer, T. Superfluid turbulence: nonthermal fixed point in an ultracold Bose gas. Phys. Rev. B 84, 020506(R) (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Hung, C.-L., Gurarie, V. & Chin, C. From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid. Science 341, 1213–1215 (2013).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Rauer, B. et al. Recurrences in an isolated quantum many-body system. Science 360, 307–310 (2018).

    MathSciNet  CAS  Article  Google Scholar 

  22. 22.

    Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  23. 23.

    Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Leslie, S. R. et al. Amplification of fluctuations in a spinor Bose–Einstein condensate. Phys. Rev. A 79, 043631 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Karl, M. & Gasenzer, T. Strongly anomalous non-thermal fixed point in a quenched two- dimensional Bose gas. New J. Phys. 19, 093014 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Zinn-Justin, J. Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 2002).

    Book  Google Scholar 

  29. 29.

    Chantesana, I., Piñeiro Orioli, A. & Gasenzer, T. Kinetic theory of non-thermal fixed points in a Bose gas. Preprint at (2018).

  30. 30.

    Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature (2018).

  32. 32.

    Kawaguchi, Y. & Ueda, M. Spinor Bose–Einstein condensates. Phys. Rep. 520, 253–381 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Gerbier, F., Widera, A., Fölling, S., Mandel, O. & Bloch, I. Resonant control of spin dynamics in ultracold quantum gases by microwave dressing. Phys. Rev. A 73, 041602(R) (2006).

    ADS  Article  Google Scholar 

  34. 34.

    Muessel, W. et al. Optimized absorption imaging of mesoscopic atomic clouds. Appl. Phys. B 113, 69–73 (2013).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Miller, R. G. The jackknife—a review. Biometrika 61, 1–15 (1974).

    MathSciNet  MATH  Google Scholar 

Download references


We thank D. M. Stamper-Kurn, J. Schmiedmayer, A. Piñeiro Orioli, M. Karl, J. M. Pawlowski and A. N. Mikheev for discussions. This work was supported by the Heidelberg Center for Quantum Dynamics, the European Commission FET-Proactive grant AQuS (project number 640800), the ERC Advanced Grant Horizon 2020 EntangleGen (project ID 694561) and the DFG Collaborative Research Center SFB1225 (ISOQUANT).

Reviewer information

Nature thanks M. Kolodrubetz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




The experimental concept was developed in discussion among all authors. M.P., P.K. and S.L. controlled the experimental apparatus. M.P., P.K., H.S., S.L. and M.K.O. discussed the measurement results and analysed the data. C.-M.S., J.B. and T.G. elaborated the theoretical framework. All authors contributed to the discussion of the results and the writing of the manuscript.

Corresponding author

Correspondence to Maximilian Prüfer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Spin distributions for all evolution times.

a, The panels show the distributions of the transversal spin, Fx, measured at different evolution times as indicated. Initially, we find a narrow Gaussian distribution corresponding to the prepared coherent spin state. The excitations developing in the transversal spin lead to a double-peaked distribution within the interval of 2 s to 10 s. For long evolution times, t > 12 s, the distribution resembles a Gaussian, which is much broader than the initial distribution. b, The spin length and its root-mean-square fluctuation as a function of evolution time are extracted by a fit (see Methods). We find a slow decay of the spin length and nearly constant root-mean-square fluctuations in the scaling regime.

Extended Data Fig. 2 Build-up of transversal spin in momentum space.

Since the angular orientation θ cannot be extracted reliably for short evolution times, we choose to show the Fourier transform of the transversal spin for regimes 1–3 (see Fig. 1). The initial condition, all atoms prepared in mF = 0, is characterized by a flat distribution. There is a fast build-up of long-wavelength spin excitations by more than two orders of magnitude within the first second. This process is followed by a redistribution of momenta leading to the scaling form for times longer than 4 s.

Extended Data Fig. 3 Scaling of structure factor for all experimentally accessible length scales.

Same data as shown in Fig. 2. a, Unscaled data. b, Data rescaled with the scaling exponents reported in the main text. The rescaling does not apply for large momenta, k > 0.04 µm−1.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prüfer, M., Kunkel, P., Strobel, H. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature 563, 217–220 (2018).

Download citation


  • Universal Dynamics
  • Spinor Bose-Einstein Condensates
  • Scaling Exponent
  • Nuclear Collision Experiments
  • Fixed Evolution Time

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing