Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Water input into the Mariana subduction zone estimated from ocean-bottom seismic data

Abstract

The water cycle at subduction zones remains poorly understood, although subduction is the only mechanism for water transport deep into Earth. Previous estimates of water flux1,2,3 exhibit large variations in the amount of water that is subducted deeper than 100 kilometres. The main source of uncertainty in these calculations is the initial water content of the subducting uppermost mantle. Previous active-source seismic studies suggest that the subducting slab may be pervasively hydrated in the plate-bending region near the oceanic trench4,5,6,7. However, these studies do not constrain the depth extent of hydration and most investigate young incoming plates, leaving subduction-zone water budgets for old subducting plates uncertain. Here we present seismic images of the crust and uppermost mantle around the central Mariana trench derived from Rayleigh-wave analysis of broadband ocean-bottom seismic data. These images show that the low mantle velocities that result from mantle hydration extend roughly 24 kilometres beneath the Moho discontinuity. Combined with estimates of subducting crustal water, these results indicate that at least 4.3 times more water subducts than previously calculated for this region3. If other old, cold subducting slabs contain correspondingly thick layers of hydrous mantle, as suggested by the similarity of incoming plate faulting across old, cold subducting slabs, then estimates of the global water flux into the mantle at depths greater than 100 kilometres must be increased by a factor of about three compared to previous estimates3. Because a long-term net influx of water to the deep interior of Earth is inconsistent with the geological record8, estimates of water expelled at volcanic arcs and backarc basins probably also need to be revised upwards9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of seismic stations and bathymetry.
Fig. 2: Vertical profiles and interpretation.
Fig. 3: Azimuthal anisotropy results at various periods.

Similar content being viewed by others

Data availability

Raw seismic data are available at the Data Management Center of the Incorporated Research Institutions for Seismology (http://www.iris.edu/dms/nodes/dmc) under network IDs MI and XF. Network and station information can be found at the IRIS website (http://www.ds.iris.edu/mda).

References

  1. Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9, Q03001 (2008).

    Article  ADS  Google Scholar 

  2. Rüpke, L. H., Morgan, J. P., Hort, M. & Connolly, J. A. D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).

    Article  ADS  Google Scholar 

  3. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).

    ADS  Google Scholar 

  4. Fujie, G. et al. Systematic changes in the incoming plate structure at the Kuril trench. Geophys. Res. Lett. 40, 88–93 (2013).

    Article  ADS  Google Scholar 

  5. Ranero, C. R., Phipps Morgan, J., McIntosh, K. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  ADS  CAS  Google Scholar 

  6. Shillington, D. J. et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nat. Geosci. 8, 961–964 (2015).

    Article  ADS  CAS  Google Scholar 

  7. Van Avendonk, H. J. A., Holbrook, W. S., Lizarralde, D. & Denyer, P. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem. Geophys. Geosyst. 12, Q06009 (2011).

    ADS  Google Scholar 

  8. Parai, R. & Mukhopadhyay, S. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317–318, 396–406 (2012).

    Article  ADS  Google Scholar 

  9. Grove, T. L., Till, C. B. & Krawczynski, M. J. The role of H2O in subduction zone magmatism. Annu. Rev. Earth Planet. Sci. 40, 413–439 (2012).

    Article  ADS  CAS  Google Scholar 

  10. Fryer, P. Serpentinite mud volcanism: observations, processes, and implications. Annu. Rev. Mar. Sci. 4, 345–373 (2012).

    Article  ADS  Google Scholar 

  11. Barklage, M. et al. P and S velocity tomography of the Mariana subduction system from a combined land-sea seismic deployment. Geochem. Geophys. Geosyst. 16, 681–704 (2015).

    Article  ADS  Google Scholar 

  12. Kelley, K. A. et al. Mantle melting as a function of water content beneath the Mariana arc. J. Petrol. 51, 1711–1738 (2010).

    Article  ADS  CAS  Google Scholar 

  13. Shaw, A. M., Hauri, E. H., Fischer, T. P., Hilton, D. R. & Kelley, K. A. Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle. Earth Planet. Sci. Lett. 275, 138–145 (2008).

    Article  ADS  CAS  Google Scholar 

  14. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  ADS  Google Scholar 

  15. Emry, E. L., Wiens, D. A. & Garcia-Castellanos, D. Faulting within the Pacific plate at the Mariana trench: implications for plate interface coupling and subduction of hydrous minerals. J. Geophys. Res. 119, 3076–3095 (2014).

    Article  ADS  Google Scholar 

  16. Oakley, A. J., Taylor, B. & Moore, G. F. Pacific plate subduction beneath the central Mariana and Izu-Bonin fore arcs: new insights from an old margin. Geochem. Geophys. Geosyst. 9, Q06003 (2008).

    Article  ADS  Google Scholar 

  17. Christensen, N. I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2004).

    Article  Google Scholar 

  18. Nishimura, C. E. & Forsyth, D. W. The anisotropic structure of the upper mantle in the Pacific. Geophys. J. Int. 96, 203–229 (1989).

    Article  ADS  Google Scholar 

  19. Feng, H. S.-H. Seismic Constraints on the Processes and Consequences of Secondary Igneous Evolution of Pacific Oceanic Lithosphere. PhD thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution (2016).

  20. Faccenda, M., Gerya, T. V., Mancktelow, N. S. & Moresi, L. Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochem. Geophys. Geosyst. 13, Q01010 (2012).

    Article  ADS  Google Scholar 

  21. Reynard, B. Serpentine in active subduction zones. Lithos 178, 171–185 (2013).

    Article  ADS  CAS  Google Scholar 

  22. Nakatani, T. & Nakamura, M. Experimental constraints on the serpentinization rate of fore-arc peridotites: implications for the upwelling condition of the slab-derived fluid. Geochem. Geophys. Geosyst. 17, 3393–3419 (2016).

    Article  ADS  CAS  Google Scholar 

  23. Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1–9 (2017).

    Article  ADS  CAS  Google Scholar 

  24. David, C., Wong, T.-F., Zhu, W. & Zhang, J. Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl. Geophys. 143, 425–456 (1994).

    Article  ADS  Google Scholar 

  25. Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).

    Article  ADS  Google Scholar 

  26. Schwartz, S. et al. Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178, 197–210 (2013).

    Article  ADS  CAS  Google Scholar 

  27. Ji, S. et al. Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones. J. Geophys. Res. 118, 1015–1037 (2013).

    Article  ADS  Google Scholar 

  28. Miller, N. C. & Lizarralde, D. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration. Geophys. Res. Lett. 43, 7982–7990 (2016).

    Article  ADS  CAS  Google Scholar 

  29. Emry, E. L. & Wiens, D. A. Incoming plate faulting in the northern and western Pacific and implications for subduction zone water budgets. Earth Planet. Sci. Lett. 414, 176–186 (2015).

    Article  ADS  CAS  Google Scholar 

  30. Nakanishi, M., Tamaki, K. & Kobayashi, K. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean. Geophys. J. Int. 109, 701–719 (1992).

    Article  ADS  Google Scholar 

  31. Takahashi, N., Kodaira, S., Tatsumi, Y., Kaneda, Y. & Suyehiro, K. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc–back-arc system. J. Geophys. Res. 113, B01104 (2008).

    ADS  Google Scholar 

  32. Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1.0: a three-dimensional model of global subduction zone geometries. J. Geophys. Res. 117, B01302 (2012).

    Article  ADS  Google Scholar 

  33. Emry, E. L., Wiens, D. A., Shiobara, H. & Sugioka, H. Seismogenic characteristics of the northern Mariana shallow thrust zone from local array data. Geochem. Geophys. Geosyst. 12, Q12008 (2011).

    Article  ADS  Google Scholar 

  34. Bensen, G. D. et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 169, 1239–1260 (2007).

    Article  ADS  Google Scholar 

  35. Lin, F.-C., Moschetti, M. P. & Ritzwoller, M. H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int. 173, 281–298 (2008).

    Article  ADS  Google Scholar 

  36. Levshin, A. L. & Ritzwoller, M. H. Automated detection, extraction, and measurement of regional surface waves. Pure Appl. Geophys. 158, 1531–1545 (2001).

    Article  ADS  Google Scholar 

  37. Barmin, M. P., Ritzwoller, M. H. & Levshin, A. L. A fast and reliable method for surface wave tomography. Pure Appl. Geophys. 158, 1351–1375 (2001).

    Article  ADS  Google Scholar 

  38. Jin, G. & Gaherty, J. B. Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophys. J. Int. 201, 1383–1398 (2015).

    Article  ADS  Google Scholar 

  39. Bell, S. W., Forsyth, D. W. & Ruan, Y. Removing noise from the vertical component records of ocean-bottom seismometers: results from year one of the Cascadia Initiative. Bull. Seismol. Soc. Am. 105, 300–313 (2015).

    Article  Google Scholar 

  40. Crawford, W. C. & Webb, S. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data. Bull. Seismol. Soc. Am. 90, 952–963 (2000).

    Article  Google Scholar 

  41. Webb, S. C. & Crawford, W. C. Long-period seafloor seismology and deformation under ocean waves. Bull. Seismol. Soc. Am. 89, 1535–1542 (1999).

    Google Scholar 

  42. Lin, F.-C., Ritzwoller, M. H. & Snieder, R. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys. J. Int. 177, 1091–1110 (2009).

    Article  ADS  Google Scholar 

  43. Lin, F.-C. & Ritzwoller, M. H. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophys. J. Int. 186, 1104–1120 (2011).

    Article  ADS  Google Scholar 

  44. Shen, W. et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int. 206, 954–979 (2016).

    Article  ADS  Google Scholar 

  45. Yang, Y. & Forsyth, D. W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys. J. Int. 166, 1148–1160 (2006).

    Article  ADS  Google Scholar 

  46. Shen, W., Ritzwoller, M. H., Schulte-Pelkum, V. & Lin, F.-C. Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophys. J. Int. 192, 807–836 (2013).

    Article  ADS  Google Scholar 

  47. Wei, S. S. et al. Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature 518, 395–398 (2015).

    Article  ADS  CAS  Google Scholar 

  48. Lindquist, K. G., Engle, K., Stahlke, D. & Price, E. Global topography and bathymetry grid improves research efforts. Eos 85, 186 (2004).

    Article  ADS  Google Scholar 

  49. Kanamori, H. & Anderson, D. L. Importance of physical dispersion in surface wave and free oscillation problems: review. Rev. Geophys. 15, 105–112 (1977).

    Article  ADS  Google Scholar 

  50. Pozgay, S. H., Wiens, D. A., Conder, J. A., Shiobara, H. & Sugioka, H. Seismic attenuation tomography of the Mariana subduction system: implications for thermal structure, volatile distribution, and slow spreading dynamics. Geochem. Geophys. Geosyst. 10, Q04X05 (2009).

    Article  Google Scholar 

  51. Wei, S. S. et al. Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography. Geochem. Geophys. Geosyst. 17, 4705–4724 (2016).

    Article  ADS  Google Scholar 

  52. Herrmann, R. B. Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013).

    Article  Google Scholar 

  53. Contreras-Reyes, E., Grevemeyer, I., Flueh, E. R., Scherwath, M. & Heesemann, M. Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise. Geochem. Geophys. Geosyst. 8, Q07003 (2007).

    Article  ADS  Google Scholar 

  54. Contreras-Reyes, E. et al. Deep seismic structure of the Tonga subduction zone: implications for mantle hydration, tectonic erosion, and arc magmatism. J. Geophys. Res. 116, B10103 (2011).

    Article  ADS  Google Scholar 

  55. DeShon, H. R. & Schwartz, S. Y. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 31, L21611 (2004).

    Article  ADS  Google Scholar 

  56. Garth, T. & Rietbrock, A. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves. Earth Planet. Sci. Lett. 474, 237–247 (2017).

    Article  ADS  CAS  Google Scholar 

  57. Savage, B. Seismic constraints on the water flux delivered to the deep Earth by subduction. Geology 40, 235–238 (2012).

    Article  ADS  CAS  Google Scholar 

  58. Evans, B. W. The serpentinite multisystem revisited: chrysotile is metastable. Int. Geol. Rev. 46, 479–506 (2004).

    Article  Google Scholar 

  59. Guillot, S., Schwartz, S., Reynard, B., Agard, P. & Prigent, C. Tectonic significance of serpentinites. Tectonophysics 646, 1–19 (2015).

    Article  ADS  Google Scholar 

  60. Perrillat, J.-P. et al. Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth Planet. Sci. Lett. 236, 899–913 (2005).

    Article  ADS  CAS  Google Scholar 

  61. Ulmer, P. & Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861 (1995).

    Article  ADS  CAS  Google Scholar 

  62. Wunder, B. & Schreyer, W. Antigorite: high-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos 41, 213–227 (1997).

    Article  ADS  CAS  Google Scholar 

  63. Gurevich, B. Elastic properties of saturated porous rocks with aligned fractures. J. Appl. Geophys. 54, 203–218 (2003).

    Article  ADS  Google Scholar 

  64. Hudson, J. A., Liu, E. & Crampin, S. The mechanical properties of materials with interconnected cracks and pores. Geophys. J. Int. 124, 105–112 (1996).

    Article  ADS  Google Scholar 

  65. Backus, G. E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank P. J. Shore, H. Jian and the captains, crew and science parties of the RVs R. Revelle and Melville for data collection; S. Wei and M. Pratt for helping with data processing; R. Parai and M. J. Krawczynski for discussions; and X. Wang for support. IRIS PASSCAL and OBSIP provided land-based seismic instrumentation and ocean-bottom seismographs, respectively. This work was supported by the GeoPRISMS Program under NSF grant OCE-0841074 (D.A.W.).

Reviewer information

Nature thanks C. Rodríguez Ranero & D. Shillington for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and M.E., advised by D.A.W., analysed the seismic data. W.S. developed and modified the Monte Carlo inversion code. C.C. and D.A.W. took the lead in writing the manuscript, and all authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Chen Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Robustness test of the low-velocity zone.

a, The assumed geometry of the subduction zone according to our prior knowledge. b, c, Simulation results for nodes 80 km (b) and 110 km (c) landward from the trench. The black dashed lines are the input one-dimensional models; blue dashed and solid lines are the best-fitting and average models from the Monte Carlo inversion of the synthetic dispersion curves, respectively; red dashed and solid lines are the best-fitting and average models from the Monte Carlo inversion of the real data.

Extended Data Fig. 2 Azimuthal anisotropy from evenly distributed serpentine layers (of thickness 450 m and with a spacing of 2 km).

a, Result for vertical layering. b, Result for 45° dipping layering. Numbers in the parenthesis are the mean velocity for quasi-P, quasi-SV or quasi-SH. The incidence angle is defined relative to the strike of the layer: 0° is parallel and 90° is normal to the strike.

Extended Data Fig. 3 Maps of azimuthally averaged group and phase velocity.

a, b, Group velocity (colour scale) at periods of 10 s (a) and 21 s (b) inverted by ANT. c, d, Phase velocity (colour scale) at periods of 10 s (c) and 21 s (d) from ANT. e, f, Phase velocity (colour scale) for periods of 25 s (e) and 40 s (f) inverted by HT. 3-km, 4-km and 5-km bathymetry contours are shown as thin grey lines. The trench axis and serpentine seamounts are shown as in Fig. 1a.

Extended Data Fig. 4 Earthquakes used in this study.

Blue dots represent ISC earthquake locations. The red star shows the location of the Mariana trench.

Extended Data Fig. 5 Examples of Monte Carlo inversion and phase-velocity sensitivity kernel.

ad, The joint Rayleigh phase and group dispersion data (error bars, one standard deviation) and computed phase (red solid lines) and group (blue solid lines) dispersion curves from the Bayesian Monte Carlo averaged model, for four locations: a, inner forearc; b, outer forearc; c, trench high; d, Pacific plate. eh, Shear-velocity model from the Bayesian Monte Carlo inversion for the four example locations. i, Phase-velocity sensitivity kernels at example periods, calculated using the average velocity model in g.

Extended Data Fig. 6 Comparison between Rayleigh-wave isotropic phase velocities determined from teleseismic tomography using HT and a two-plane-wave method.

a, At 27 s. b, At 36 s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Wiens, D.A., Shen, W. et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature 563, 389–392 (2018). https://doi.org/10.1038/s41586-018-0655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0655-4

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing