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The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To
investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at
distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133
transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (y-aminobutyric acid)-containing
neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas.
By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic
neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional
taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.

The neocortex coordinates most flexible and learned behaviours'2 In
mammalian evolution, the cortex underwent greater expansion in the
number of cells, layers and functional areas compared to the rest of
the brain, coinciding with the acquisition of increasingly sophisticated
cognitive functions®. On the basis of cytoarchitectonic, neurochemical,
connectional and functional studies, up to 180 distinct cortical areas
have been identified in humans® and dozens in rodents™®. Cortical areas
have laminar structure (layers (L) 1-6), and are often categorized as
sensory, motor or associational, on the basis of their connections with
other brain areas. Different cortical areas show qualitatively different
activity patterns. Primary visual (VISp) and other sensory cortical areas
process sensory information with millisecond timescale dynamics’~>.
Frontal areas, such as the anterior lateral motor cortex (ALM) in mice,
show slower dynamics related to short-term memory, deliberation,
decision-making and planning!®-!2, Categorizing cortical neurons into
types, and studying the roles of different types in the function of the
circuit, is an essential step towards understanding how different cortical
circuits produce distinct computations!'>14,

Previous studies have characterized various neuronal properties to
define numerous types of glutamatergic (excitatory) and GABAergic
(inhibitory) neurons in the rodent cortex!>-2, Reconciling the
morphological, neurophysiological and molecular properties into
a consensus view of cortical types remains a major challenge. We
leveraged the scalability of single-cell RNA sequencing (scRNA-seq)
to define cell types in two distant cortical areas. We analysed 14,249
cells from the VISp and 9,573 cells from the ALM to define 133 tran-
scriptomic types and establish correspondence between glutamatergic
neuron projection patterns and their transcriptomic identities. In the
accompanying paper?!, we show that transcriptomic L5 types with
different subcortical projections have distinct roles in movement plan-
ning and execution.

Overall cell type taxonomy

Building on our previous study®’, we established a standardized pipe-
line for scRNA-seq (Extended Data Figs. 1-4). Individual cells were
isolated by fluorescence-activated cell sorting (FACS) or manual pick-
ing, cDNA was generated and amplified by the SMART-Seq v4 kit, and
cDNA libraries were tagemented by Nextera XT and sequenced on the
Ilumina HiSeq2500 platform, resulting in the detection of approxi-
mately 9,500 genes per cell (median; Extended Data Fig. 4).

We report 23,822 single-cell transcriptomes with cluster-assigned
identity, validated by quality control measures (Extended Data Fig. 2b).
The cells were isolated from the VISp and ALM of adult mice (96.3% at
postnatal day (P) 53-59, Supplementary Table 1) of both sexes, in the
congenic C57BL/6] background (Extended Data Fig. 1a). We obtained
10,752 cells from layer-enriching dissections of ALM and VISp of
pan-neuronal, pan-glutamatergic or pan-GABAergic recombinase
driver lines crossed to recombinase reporters (referred to as the PAN
collection; Extended Data Fig. 1, Supplementary Table 2). To sample
non-neuronal cells, compensate for cell survival biases, and collect rare
types, we supplemented the PAN collection with 10,414 cells isolated
from a variety of recombinase driver lines and reporter-negative cells,
with or without layer-enriching dissections (Extended Data Fig. 1b, h, i).
To investigate the correspondence between transcriptomic types and
neuronal projection properties, we analysed 2,656 retrogradely labelled
cells (retro-seq dataset, Fig. 1a), resulting in 2,204 cells in the annotated
retro-seq dataset (Extended Data Fig. 2c).

We defined 133 clusters by combining iterative, bootstrapped dimen-
sionality reduction with clustering (Extended Data Fig. 2b). After
clustering, we evaluated cluster membership to assign core versus
intermediate identity to each cell: core cells (21,195 cells) are reliably
classified into the original cluster (in more than 90 out of 100 trials);
others are labelled intermediate®® (2,627 cells; Extended Data Fig. 2b).
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By assigning identity to each cluster based on previously reported
and newly discovered differentially expressed genes (Extended
Data Fig. 5), we identified 56 glutamatergic, 61 GABAergic and 16
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Fig. 1 | Cell type taxonomy in ALM and VISp cortical areas.

a, Transgenically or retrogradely labelled cells and unlabelled cells were
collected by layer-enriching or all-layer microdissections from the

ALM or VISp. b, After dissociation, single cells were isolated by FACS

or manual picking, mRNA was reverse transcribed (RT), amplified
(cDNA amp.), tagmented and sequenced (next-generation sequencing,
NGS). ¢, Clustering revealed 61 GABAergic, 56 glutamatergic, and 16
non-neuronal types organized in a taxonomy on the basis of median
cluster expression for 4,020 differentially expressed genes, n =23,822
cells and branch confidence scores > 0.4 (Extended Data Figs. 1-3). Cell
classes and subclasses are labelled at branch points of the dendrogram.
Bar plots represent fractions of cells dissected from the ALM and

VISp, and from different layer-enriching dissections. Astro, astrocyte;
CR, Cajal-Retzius cell; endo, endothelial cell; oligo, oligodendrocyte;
OPC, oligodendrocyte precursor cell; peri, pericyte; PVM, perivascular
macrophage; SMC, smooth muscle cell; VLMC, vascular lepotomeningeal
cell; IT, intratelencephalic; PT, pyramidal tract; NP, near-projecting; CT,
corticothalamic. Brain diagrams were derived from the Allen Mouse Brain
Reference Atlas (version 2 (2011); downloaded from https://brain-map.
org/api/index.html).

non-neuronal types (Fig. 1). These types correspond well to the 49
types from our previous study®’, with better resolution provided in the
current dataset (Extended Data Fig. 6). Sub-sampling analysis shows
that for most clusters, we sampled many more cells than needed to
define them (Extended Data Fig. 7). The use of many transgenic lines
enabled focused access to select rare types, and allowed us to define cell
types labelled by each line (Extended Data Fig. 8).

A clear hierarchy of transcriptomic cell types and their relationships
emerged (Fig. 1). Consistent with previous reports'>?’, the biggest dif-
ferences are observed between non-neuronal (n = 1,383) and neuronal
(n=22,439) cells. We refer to major branches as classes (for exam-
ple, glutamatergic class), and related groups of types as subclasses (for
example, L6b subclass) (Fig. 1c). We do not assign subclass or class to
isolated branches (for example, CR-Lhx5 cells). We detect all previously
defined non-neuronal classes in the cortex (Extended Data Fig. 9).

Most neurons fall into two major branches corresponding to glutama-
tergic and GABAergic classes (Fig. 1). There are two exceptions: CR-Lhx5
and Meis2-Adamts19, two distant branches preceding the major gluta-
matergic and GABAergic split. On the basis of marker expression and cell
source, Meis2-Adamts19 corresponds to the Meis2-expressing GABAergic
neuronal type largely confined to white matter that originates from the
embryonic pallial-subpallial boundary*’. Among GABAergic types, this is
the only type that reliably expresses the transcription factor Meis2 mRNA,
and transcribes the smallest number of genes (median =4,965, Extended
Data Fig. 4b). CR-Lhx5 corresponds to Cajal-Retzius (CR) cells based
on their location in L1 and expression of known Cajal-Retzius mark-
ers, such as Trp73, Lhx5 and Reln®*** (Extended Data Fig. 5). Almost all
GABAergic types contain cells from both ALM and VISp (Figs. 1c, 2a)
with the exception of Sst-Tac1-Tacr3 and Pvalb-Reln-Itm2a types, which
are VISp-specific. By contrast, the glutamatergic types are mostly segre-
gated by area (Figs. 1c, 2a), with the exception of five shared types: one L6
CT type, three L6b types and the CR-Lhx5 type.

We performed differential gene expression tests between the best-
matched ALM- and VISp-specific types (mostly glutamatergic; Extended
Data Fig. 10c) and between ALM- and VISp-portions of shared types
(mostly GABAergic and non-neuronal) (Fig. 2b). We find that the
best-matched glutamatergic types have a median of 78 differentially
expressed genes and average eightfold difference in expression (Fig. 2b,
Supplementary Table 3). We find more ALM-enriched genes (Fig. 2c,d). We
confirm the area-specific expression of several genes by RNA in situ hybrid-
ization (ISH) from the Allen Brain Atlas®® (Extended Data Fig. 10d, e).
By contrast, the GABAergic neurons from the two areas belonging to the
same cluster have a median of 2 (and at most 19) differentially expressed
genes, with an average 5.2-fold difference in expression (Fig. 2b, left).

Glutamatergic taxonomy by scRNA-seq and projections
Most cortical glutamatergic neurons project outside of their resi-
dent area, and genetic markers have been correlated with projection

1 NOVEMBER 2018 | VOL 563 | NATURE | 73

© 2018 Springer Nature Limited. All rights reserved.


https://brain-map.org/api/index.html
https://brain-map.org/api/index.html

ARTICLE

a Cortical area

GABA Class Cluster

Gluta - - 2.

Non-neu. " &
o §ryi

25 0 25 50

t-SNE 1
Neuronal vs
non-neu.

ALM vs VISp Between
GABAergic ~ ALM vs VISp subclasses

 olntamat With bel ; Non-neu. vs
! ,, 2 utamatergic ithin-subclass | “ -
‘ 9 g ‘| non-neu.

o

GABAergic vs
glutamatergic

<9: 10
8 257.8
- ol I R A il (N ——
o 110.7
o
c
[}
k=)
™
j=2)
o
c
3 i & o i
2 R H
= T ; 111! 3481670 615 3,216
0 1 2 3 4
log,o(n DE genes + 1)
QI AlMvsVISp ALM vs VISp Non-
G glutamatergic GABAergic : neu.
200 H H
Sst Tac1 Tacr3 IALM-
1 H

éspecific

!l
Sl Ol .

?

g ; o J— | _ _.j g

i o R R R R B

100 Sst Tact Hirld ispecific

d Higher in ALM Higher in VISp
1.00
te  PEE o
0.25 ~

cazr AV

o
o

Proportion of cells in more
o
2

frequent area (max(VISp, ALM))

GABAergic vs
GABAergic
Glutamatergic vs
glutamatergic

Adamts19
0.001
100 075 05 025 0 025 050 075 1.00
Region-specific expression (proportion of cells in VISp — ALM/max(VISp, ALM))
Fig. 2 | Comparison of gene expression differences among types across
cortical areas. a, Two-dimensional ¢-distributed stochastic neighbour
embedding (¢-SNE) plots based on 4,020 differentially expressed genes for
n=23,822 cells, coloured by region, class and cluster. Most glutamatergic
types are ALM- or VISp-specific. Most GABAergic types contain cells
from both regions (salt-and-pepper clusters, left -SNE). b, Number of
differentially expressed (DE) genes (x axis) and mean difference in gene
expression (y axis) for all 8,778 pairs of clusters. Left, comparisons between
ALM and VISp portions of each GABAergic cluster (pink) and best-
matched glutamatergic ALM and VISp clusters (blue). For comparison,
centre and right panels show differences between: types within a subclass,
types from different subclasses, non-neuronal types, types from different
neuronal classes (GABA versus glutamate), and neuronal and non-
neuronal types. Grey points represent all pairwise type comparisons; pink
points are only in the left panel. ¢, Number of differentially expressed
genes between best-matched ALM- and VISp-specific cell types (Extended
Data Fig. 10c) or ALM and VISp portions for shared types. Cell types on
the x axis are coloured as in Fig. 1; black horizontal line separates matched
ALM and VISp types, but not the shared types. Black and grey bars denote
the numbers of ALM- and VISp-enriched genes, respectively. d, ALM- or
VISp-specific genes based on the proportion of cells in each region that
express each gene, calculated separately for glutamatergic and GABAergic
cells.

properties'>?%?”. To inform our transcriptomic taxonomy with neu-
ronal projection properties, we analysed the transcriptomes of 2,204
cells labelled by retrograde injections (retro-seq dataset; Fig. 3a,
Extended Data Fig. 2¢). Projection targets (Fig. 3b, Extended Data
Fig. 10) were selected based on the Allen Mouse Brain Connectivity
Atlas®® and other anatomical data®. Retro-seq cells were processed
through the same pipeline including clustering with all other cells.
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Fig. 3 | Glutamatergic cell types by scRNA-seq and projections.

a, Retro-seq: after virus injections and brain sectioning, injection sites
were imaged to determine injection specificity. Tissue was microdissected
from the collection site (ALM or VISp) and processed as shown in Fig. 1b.
b, Injection targets grouped into broad regions: cortex (CTX), striatum
(STR), thalamus (TH), tectum (TEC), pons (P) or medulla (MY).

¢, Dendrogram of glutamatergic cell types in ALM followed by numbers
of cells (represented by disc area) originating from retrograde labelling
from regions on top. Shaded regions denote cells labelled unintentionally,
directly or retrogradely through the needle (injection) tract. d, As in ¢, but
for VISp. Only glutamatergic cells from the annotated retro-seq dataset
were included: n = 1,138 out of 1,152 annotated cells in ¢, and 1,049 out of
1,052 annotated cells in d. See Extended Data Fig. 10a, b for further details.
Brain diagrams were derived from the Allen Mouse Brain Reference Atlas
(version 2 (2011); downloaded from https://brain-map.org/api/index.
html).

We assigned identities to glutamatergic neuron types based on their
projection patterns (Fig. 3c, d), dominant layer-of-dissection (Figs. 1c, 4b),
and expression of marker genes (Fig. 4c, Extended Data Fig. 5). We rep-
resent the relationships between types by a constellation diagram and
adendrogram (Fig. 4a,b). VISp and ALM contain common subclasses
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Fig. 4 | Glutamatergic cell types and markers. a, Constellation diagram
of ALM and VISp types. Disc areas represent core cell numbers for each
cluster (n=10,729), edge weights represent intermediate cell numbers
(n=1,136). L6-CT-Nxph2-Sla, L6b-Col8al-Rprm, L6b—Hsd17b2 and
L6b-P2ry12 are found in both areas. Cajal-Retzius type was omitted.

b, Dendrograms correspond to glutamatergic portion of Fig. 1c. Layer
distribution for each type was inferred from layer-enriching dissections
(n=8,477 out of 11,871 cells in glutamatergic clusters): each dot
represents a cell positioned at random within each layer. Distributions
are approximate owing to sampling strategy (Methods). ¢, Marker gene
expression distributions within each cluster are represented by violin
plots. Rows are genes, black dots are medians. Values within each row are
normalized between 0 and maximum detected, displayed on a log; scale
(n=11,827 cells).

of projection neurons (Fig. 3¢, d): intratelencephalic (IT), pyramidal
tract (PT), near-projecting (NP) and corticothalamic (CT). We vali-
dated the preferential residence layer for neuronal cell bodies of select
types by RNA fluorescent in situ hybridization (FISH) and neuronal
projections by anterograde labelling (Extended Data Fig. 11).

Projection properties dominate the dendrogram structure. The
IT types constitute the largest branch in both the VISp and ALM
glutamatergic taxonomies (Figs. lc, 3¢, d), and span most layers.
IT constellations include many intermediate cells, which connect
types within a layer, between equivalent layers (for example, L2-L3
in ALM and VISp) or from neighbouring layers (Fig. 4a). We define
many new markers (Fig. 4c), including a new pan-IT-type marker
(Slc30a3) and a new L6-1T-type marker (Osrl). We also define a
distinct IT type, L6-IT-VISp-Car3, which expresses a unique combi-
nation of markers including Car3, OprklI and Nr2f2 (Fig. 4). Some of
these genes have been previously detected in the claustrum®, and are
detected in VISp L6 in the Allen Brain Atlas®®. Anterograde labelling
confirms these findings and refines our knowledge of cortico-cortical
projections (Extended Data Fig. 11). For example, IT types preferen-
tially target different laminae in same target areas—upper layers for
L2-L3 and L5 IT types, and lower ones for L6 IT types (Extended
Data Fig. 11f-h).

Pyramidal tract neurons, the descending output neurons in L5, share
a separate branch in the taxonomy (Fig. 1c). They project to subcortical
targets (Fig. 3¢, d) and express the previously known marker Bcl6*® and
anew pan-pyramidal tract neuronal marker Fam84b (Fig. 4b, c). The
three pyramidal tract transcriptomic types in the ALM correspond to
two projection classes?!: two project to the thalamus, whereas the third
projects to the medulla (Extended Data Fig. 10a). The thalamus- and
medulla-projecting ALM pyramidal tract neurons have distinct func-
tions in planning and executing voluntary movements, respectively®!.
Similarly, it seems that pyramidal tract types from the VISp display
differential subcortical projections (Extended Data Fig. 10b).

Corticothalamic (CT) L6 types (Fig. 3¢, d) share the transcription
factor marker Foxp2 (Fig. 4b, c), and may have cell-type-specific pref-
erences for different thalamic nuclei (Extended Data Fig. 10b).

L6b types share many markers, such as Cplx3, Ctgfand Nxph4>>>1:32,
but display differential projections to the thalamus or anterior cingulate
(Fig. 3d). The thalamus-projecting L6b—Col8al-Rprm type is related
to the L6-CT-VISp-Krt80-Sla type (Fig. 4a), and expresses shared
markers (for example, Rprm and Crym; Fig. 4c). This relationship is
captured in the constellation diagram (Fig. 4a), but not in the den-
drogram (Fig. 4b). Three other L6b types in the VISp project to the
anterior cingulate area (Extended Data Fig. 10b). For the remaining L6b
types, we observed no long-distance projections. As recently reported,
anterograde tracing in Ctgf-2A-dgcre knock-in mice (see Methods)
confirms sparse long-range projections from the anterior VISp to the
anterior cingulate area. In addition, it shows that L6b neurons in the
VISp and ALM project to L1 within resident and neighbouring cortical
areas (Extended Data Fig. 11j).

We define four related types in L5-L6 that express distinct mark-
ers including Slc17a8, Trhr, Tshz2, Sla2 and Rapgef3 (Fig. 4c). On
the basis of the retro-seq dataset, they do not project to any of the
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Fig. 5 | GABAergic cell types by scRNA-seq. a, b, Constellation diagrams
for Sst and Pvalb (a) and Lamp5, Serpinfl, Sncg and Vip (b) types, as
in Fig. 4a (n=9,021 core cells; n = 1,457 intermediate cells). Edges
connecting subclasses are pink. Meis2 type was omitted. ¢, d, Dendrograms
are portions of Fig. 1c focused on the main GABAergic branch. Below the
dendrograms, layer distribution for each type was inferred as in Fig. 4b;

assayed areas (Fig. 3¢, d). Anterograde tracing of neurons labelled by
anew Cre line Slc17a8-IRES2-cre, reveals only sparse projections to
neighbouring areas (Extended Data Fig. 11k), earning this subclass
the name ‘near projecting. Some of these cells probably correspond
to previously reported Slc17a8" L5 cells?®, as well as cells labelled by
Efr3a-cre_NO108>*.

GABAergic cell type taxonomy by scRNA-seq

We define six subclasses of GABAergic cells: Sst, Pvalb, Vip, Lamp5,
Sncg and Serpinfl, and two distinct types: Sst—-Chodl and Meis2-
Adamts19 (Fig. 1¢). We represent the taxonomy by constellation dia-
grams, dendrograms, layer-of-isolation, and the expression of select
marker genes (Fig. 5a—f). The major division among GABAergic types

76 | NATURE | VOL 563 | 1 NOVEMBER 2018

d Sncg
Serpinf1

L2/3

L4

L5

L6

o
=
;% E 9 1S i
ELe a = |§ S 3
%558 o L EEELEL R EERE
52823 =¥ L,Eek8ESScnyfsfrozce
REET el eE83ags=838c5950an
IS8 38-<P=0<X00 S ¥Ry - ~I-D3g
xEffZ20 3302688 -~-23535858¢c8%8xEaaR
ceusuRa®SCSEELSRRa9R83838s2e3
%g-ggg%ggggg'g_'@@@qqswtwn.u:qton.ooo
553585365668 8SSSSE8S88S888888
f o mm mmm o o N e s Max CEM
Lamp5 (AT T T Y YT 4.9x10°
Nanfl | | STTT 82 [ L L. 32x10
Krt73 (A | WAV Wl 1 L1 I 1.8x10°
Fam19a1 %;@f\ [ 87 L L1 o] 30x0
pase @L#LLLQAA.Li;LLALLLL+LLLiLt ggg
n
TfLALLQ@'LLLLL9LLLLLLLLLLL+A LLg?g
Sp | I | | | | x
Lhx6 = ] | | | 9.3x10°
N2t @ , 1.2x10°
VPl dasa s s 1 TAVLTRA hs - 1.3x10°
oy A%L*;;;ATY a1 L*;Lngxlg
c1/a ]
Neve| 4 | | | | W lf___ﬂﬂ 1R TA] @620
Gpr50 A 6.8x10°
Itih5 Y | I 1ill 7.5x10°
Sepinft || | . 1111 |9Y® 1] 1|11M| 8.8x10°
Igfbp6| | | | | ||y W\ AN I | Ll | 57X102
Gpe3 | | I L 1&$+I@ﬁx L1 | 11x10°
Lmo1 1 D W 1l 11 | 22X
POt @Y TY 1@ . @ AYALAI@? Al L 14, 18x10
Rspod | | Ll L1 | | | | RR|A i 5.3x10°
Chat 1 | AT JL"LL L# 6610
Crispld2 ,++*¢,+4*A;4 44L4+++¢AL44L¢ <@ 25510
Coli5at I Y S 41310
Pdela [T A "’!.lli ! A | l 1.7x10°

only cells from single-layer dissections were used: n=4,675 out of 5,365
cells in ¢, and 3,908 out of 5,113 cells in d. Distributions are approximate
owing to the sampling strategy (Methods). e, f, Marker gene expression
distributions within each cluster are represented by violin plots as in

Fig. 4c. n=5,365 cells in e and 5,113 cells in f.

largely corresponds to their developmental origin in the medial gan-
glionic eminence (Pvalb and Sst subclasses) or caudal ganglionic emi-
nence (Lamp5, Sncg, Serpinfl and Vip subclasses).

The Sst and Pvalb subclasses within the Sst and Pvalb constellation
are connected by select upper and lower layer types (Fig. 5a, pink lines).
The Lamp5, Vip, Serpinfl and Sncg subclasses are represented by four
interconnected neighbourhoods in the constellation diagram (Fig. 5b).
These complicated landscapes are the result of many genes expressed in
a combinatorial and graded fashion (Extended Data Fig. 5), resulting
in high co-clustering frequencies (Extended Data Fig. 3a) and many
intermediate cells (Fig. 5a, b).

Our GABAergic transcriptomic taxonomy agrees with previ-
ously reported interneuron types based on marker gene expression,

© 2018 Springer Nature Limited. All rights reserved.



transgenic lines, published Patch-seq (patch-pipette-extracted sin-
gle-cell RNA sequencing) and other scRNA-seq data (Supplementary
Table 4, Extended Data Figs. 8, 12). Sst-Chodl corresponds to Nos1™
long-range projecting interneurons based on marker expression, loca-
tion, Cre-line labelling, and other RNA-seq data?®3>3 (Supplementary
Table 4, Extended Data Figs. 8, 12). Sst-Calb2-Pdlim5 corresponds to
Sst™and Calb2™ 12/3 Martinotti cells'®**3¢ (Fig. 5e, Extended Data
Fig. 12a), whereas some of the deep-layer Sst types (for example, Sst-
Chrna2-Glra3) express Chrna2, a gene detected in L5 Martinotti cells®.

For the Pvalb subclass, we confirm that the Pvalb-Vipr2 type (Pvalb-
Cpne5 in our previous study®’), corresponds to chandelier cells by map-
ping of the recently reported chandelier cell (CHC1) RNA-seq data®
to our Pvalb-Vipr2 type (Extended Data Fig. 12a). We used the new
genetic marker Vipr2 to develop Vipr2-IRES2-cre to access chandelier
cells (Extended Data Figs. 8, 13a—f). Several other Pvalb types (Pvalb-
Gprl149-Islr, Pvalb-Tpbg and Pvalb-Reln-Tacl) correspond to basket
cells®® (Extended Data Fig. 12a, b).

Within the Lamp5, Vip, Sncg and Serpinfl subclasses, we find evi-
dence for neurogliaform, bipolar, single bouquet and cholecystokinin
(CCK) basket cell types (Supplementary Table 1). The Sncg subclass
corresponds to the Vip™ and Cck™ multipolar or basket cells and is dis-
tinct from cells of the Vip subclass that are also Calb2" and have bipolar
morphologies!®*>% (Fig. 5f, Extended Data Fig. 12a). We previously
assigned neurogliaform cell identity to Ndnftypes®®, which correspond
to several current Lamp5 types (Extended Data Fig. 6). We confirm this
finding by mapping of published Patch-seq data®® to our data (Extended
Data Fig. 12d-f) and find correspondence of neurogliaform cells to
Lamp5-Plch2-Dock5 and Lamp5-Lsp1 types. In addition, we find that
single bouquet cells map mostly to Lamp5-Fam19al-Tmem182, and
find a possible transitional single bouquet-neurogliaform cell type,
Lamp5-Ntn1-Npy2r (Extended Data Fig. 12d).

The Lamp5-Lhx6 type is unusual because it clusters with other
Lamp5 types, which are derived from the caudal ganglionic eminence,
but expresses Nkx2.1 (also known as Nkx2-1) and Lhx6, which encode
transcription factors of the medial ganglionic eminence. This type is
labelled by tamoxifen induction at embryonic day (E) 18 of Nkx2.1-
creERT2 mice (Extended Data Fig. 8) and was isolated previously®
from the same Cre line (Extended Data Fig. 12a—c). We find that the
RNA-seq data of chandelier type 2 cells (CHC2)* map primarily to our
Lamp5-Lhx6 type (Extended Data Fig. 12a, b), which is transcriptom-
ically most related to Lamp5 neurogliaform types.

Continuous variation and cell states

Cell classes are easily identified because they are driven by large differ-
ences in gene expression (Fig. 2b) and agree well with previous litera-
ture'>?%. Gene expression differences between subclasses and types are
smaller and sometimes graded (Fig. 2b), making interpretation more
complicated. Constellation diagrams capture differences in gene expres-
sion among types as a combination of continuity and discreteness.
However, they do not capture heterogeneity within types, which may
be substantial. To illustrate this, we focus on the L4-IT-VISp-Rspol
type, which consists of 1,404 cells and displays heterogeneity along the
first principal component (Extended Data Fig. 14a—c). The extent of the
heterogeneity between the ends of this type is similar to heterogeneity
between this type and a neighbouring type (L4-IT-VISp-Rspol and
L5-1T-VISp-Hsd11b1-Endou, Extended Data Fig. 14d, ). However,
in this dataset, we were unable to split this cluster into subclusters using
our clustering criteria. This cluster maps to three clusters connected
by many intermediate cells in our previous study*® (Extended Data
Fig. 14b). Therefore, the description of L4 cell heterogeneity changed
from discrete with many intermediate cells?® to continuous, possibly
owing to more extensive cell sampling and better gene detection. To
demonstrate how clustering criteria affect the taxonomy, we performed
clustering for Sst types at different stringencies. As expected, less strin-
gent statistical criteria yield more types, and vice versa (Extended Data
Fig. 14f).

ARTICLE

Transcriptomic profiles are also influenced by cell states, which can
be defined as reversibly accessible locations a cell can occupy within a
multidimensional gene expression space®. To determine whether we
can detect activity-dependent changes that may be indicative of states
in our cell types, we mapped our cells to VISp transcriptomic clusters
from dark-reared animals, some of which were exposed to light before
euthanasia® (Extended Data Fig. 15). We find several glutamatergic
and GABAergic types that display statistically significant enrichment
or depletion of early- and/or late-response genes, showing that some
of our types probably represent cell states. Therefore, our clustering
criteria are appropriate to capture at least some cell states, whereas
more stringent criteria may overlook them (Extended Data Fig. 14f; the
Sst-Tacl-Tacr3 cluster merges with Sst-Tacl-Htrld).

Discussion

We used single-cell transcriptomics to uncover the principles of cell
type diversity in two functionally distinct areas of neocortex. We define
133 transcriptomic types, 101 types in the ALM and 111 in the VISp, 79
of which are shared between these areas. Most glutamatergic types are
area-specific. By contrast, and as previously suggested'®, non-neuronal
and most GABAergic neuronal types are shared across cortical areas.
Although we detect area-specific differences in gene expression within
GABAergic types (Fig. 2, Extended Data Fig. 16), they are usually insuf-
ficient to define subtypes with our statistical criteria.

This dichotomy correlates with neuronal connectivity patterns and
developmental origins. Most glutamatergic types in VISp or ALM
project to different cortical and subcortical targets (Fig. 3, Extended
Data Fig. 10), whereas nearly all GABAergic interneurons form local
connections. Most glutamatergic neurons are born locally within the
ventricular-subventricular zone of the developing cortex*!, which
is pre-patterned with developmental gradients—an embryonic
protomap****—and further segregated into areas through differential
thalamic input in development***>. By contrast, types that are shared
across areas are derived from extracortical sources, and migrate into the
developing cortex: most GABAergic interneurons are from the medial
ganglionic eminence or caudal ganglionic eminence'®; Meis2 interneu-
rons are from the pallial-subpallial boundary®’ and Cajal-Retzius cells
of the hippocampus and cortex are from the cortical hem*®. It remains
to be investigated whether some of the shared L6b types may originate
from the rostro-medial telencephalic wall, a known source for a subset
of subplate neurons that are distinct from those generated within the
local ventricular-subventricular zone?’, or whether further sampling
may segregate them into area-specific types. Although our taxonomy
mostly agrees with the developmental origins of the cells, there are
exceptions. For example, tamoxifen induction of Nkx2.1-creERT2 mice
at E18 labels not only chandelier cells, but also a suggested second
chandelier type, CHC23. Our taxonomy suggests that CHC2 may be a
neurogliaform type (Lamp5-Lxh6) that arises from the medial ganglionic
eminence, and that neurogliaform types could arise through different
developmental pathways and embryonic sources in an example of
developmental convergence.

We observe both discrete and continuous gene expression variation
among and within types. To accommodate both kinds of variation,
we used post-clustering classifiers to construct constellation diagrams,
and were able to capture cell states. Alternative analyses of these land-
scapes lead to more cluster splits (more discreteness) or merges (more
continuous variation) (Extended Data Fig. 14f). The detected and
described (versus actual) discreteness in the definition of cell types
depend on gene detection, cell sampling, and noise estimates or statis-
tical criteria® (Extended Data Fig. 14b, f). Future experimental data-
sets would benefit from multimodal data acquisition, more efficient
mRNA detection, and sampling cells according to their abundance in
situ*® and in different states*. Our dataset provides a foundation for
understanding the diversity of cortical cell types and dissecting circuit
function. As an example, in the accompanying paper?!, we show that
ALM L5 pyramidal tract neurons map to transcriptomic clusters with
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distinct projection patterns that have different roles in the preparation
and execution of movement.
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METHODS

Mouse breeding and husbandry. All procedures were carried out in accordance
with Institutional Animal Care and Use Committee protocols 1508, 1510 and 1511
at the Allen Institute for Brain Science and Janelia Research Campus. Animals were
provided food and water ad libitum and were maintained on a regular 12-h day/
night cycle at no more than five adult animals per cage. Animals were maintained
on the C57BL/6] background, and newly received or generated transgenic lines
were backcrossed to C57BL/6]. Experimental animals were heterozygous for the
recombinase transgenes and the reporter transgenes. Transgenic lines used in this
study are summarized in Supplementary Table 5. Standard tamoxifen treatment
for CreER lines included a single dose of tamoxifen (40 pul of 50 mg ml™!) dissolved
in corn oil and administered via oral gavage at P10-14. Tamoxifen treatment for
Nkx2.1-creERT2;Ai14 was performed at E17 (oral gavage of the dam at 1 mg per
10 g of body weight), pups were delivered by caesarean section at E19 and then
fostered. Cux2-creERT2;Ai14 mice received tamoxifen treatment daily, for five con-
secutive days, between P30 and P40. Trimethoprim was administered to animals
containing Ctgf-2A-dgcre by oral gavage daily, for three consecutive days, between
P35 and P45 (0.015 ml per g of body weight using 20 mg ml™! trimethoprim solu-
tion). Ndnf-IRES2-dgcre animals did not receive trimethoprim induction, because
the baseline dgCre activity (without trimethoprim) was sufficient to label the cells
with the Ail4 reporter®’. The transgenic component dgcre encodes a destabilized
Cre protein: it contains a destabilizing domain ‘d, which is stabilized by trimeth-
oprim, and a non-fluorescent portion of eGFP ‘g. We excluded any animals with
anophthalmia or microphthalmia. We used 352 animals to collect the set of 24,411
cells for clustering (Supplementary Table 1). Animals were euthanized at P53-P59
(n=339), P51 (n=1), and P63-P91 (n=12). No statistical methods were used to
predetermine sample size.

Generation of transgenic mice (Penk-IRES2-cre-neo, Slc17a8-IRES2-cre and
Vipr2-IRES2-cre). Vectors containing gene-specific homology arms and IRES2-
cre-bGHpoly(A)-PGK-gb2-neo-PGKpoly(A) components were generated using gene
synthesis (GenScript) and standard molecular cloning techniques. Targeting of
the transgene cassette into the endogenous gene locus immediately downstream
of the stop codon was accomplished by CRISPR-Cas9-mediated genome editing
using circularized targeting vector in combination with a gene-specific guide vec-
tor (Addgene, plasmid 42230)*. The 12956/B6 F, embryonic stem (ES) cell line,
G4, was used to generate all modified ES cells. Correctly targeted clones were
identified using standard screening approaches (PCR, qPCR and Southern blots)
and injected into blastocysts to obtain chimaeras and subsequent germline trans-
mission. Resulting mice were crossed to the Rosa26-PhiC310 mice (JAX, 007743)"!
to delete the PGK-neo selection cassette, and then backcrossed to C57BL/6] mice
and maintained in the C57BL/6] background. The PGK-neo cassette could not
be removed from Penk-IRES2-cre-neo by the PhiC31o integrase-mediated
recombination.

Retrograde labelling. We injected rAAV2-retro-EF1a-Cre®?, RVAGL-Cre, or
CAV2-Cre (gift from M. Chillon Rodrigues)®* into brains of heterozygous or
homozygous Ail4 mice as previously described®’. For ALM experiments, we also
injected rAAV2-retro-CAG-GFP or rAAV2-retro-CAG-tdTomato®? into wild-
type mice. Stereotaxic coordinates were obtained from Paxinos adult mouse brain
atlas®(Supplementary Table 6). For two VISp experiments, we injected into the
superior colliculus sensory-related area by inserting the needle through the cere-
bellum at a 45° angle in the posterior to anterior direction. TdT" or GFP* single
cells were isolated from VISp or ALM, depending on the injection area. Detailed
information on used viruses is available in Supplementary Table 7.

Anterograde labelling. For anterograde projection mapping, we injected AAV2/1-
pCAG-FLEX-eGFP-WPRE-pA? into VISp or ALM of 8-12-week-old mice.
Stereotaxic injection procedure was the same as for retrograde labelling above. In
Ctgf-2A-dgcre mice, one week after AAV injection, trimethoprim induction was
conducted for 3 consecutive days as described previously*’. Mice were euthanized
and brains perfused after 21 days (or 28 days in the case of Ctgf-2A-dgcre) after
AAV injection, and brains were imaged using TissueCyte 1000 system as described
previously. Experiments can be viewed interactively on the Allen Institute data
portal at http://connectivity.brain-map.org/.

Single-cell isolation. We isolated single cells as previously described?**>7 with
modifications below. We usually used layer-enriching dissections, with focus on
a single layer. Broader dissections (no layer enrichment or multiple layers com-
bined) were used for lines that label small numbers of cells, to facilitate isolation
of sufficient number of cells. We updated our artificial cerebrospinal fluid (ACSF)
formulation compared to our previous study? to include N-methyl-p-glucamine
(NMDG) to improve neuronal survival®®. Our ACSF consisted of CaCl, (0.5 mM),
glucose (25 mM), HCI (96 mM), HEPES (20 mM), MgSO, (10 mM), NaH,PO,
(1.25 mM), myo-inositol (3 mM), N-acetylcysteine (12 mM), NMDG (96 mM),
KCl (2.5 mM), NaHCOj3 (25 mM), sodium L-ascorbate (5 mM), sodium pyruvate
(3 mM), taurine (0.01 mM), thiourea (2 mM), and was bubbled with carbogen
gas (95% O, and 5% COy). For samples collected after 16 December 2016, the
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ACSF formulation also included trehalose (13.2 mM). Mice were anaesthetized
with isoflurane and perfused with cold carbogen-bubbled ACSE. The brain was
dissected, submerged in ACSE, embedded in 2% agarose, and sliced into 250-pum
coronal sections on a compresstome (Precisionary). Enzymatic digestion, tritu-
ration into single cell suspension, and FACS analysis of single cells were carried
out as previously described®, with example sorting strategy shown in Extended
Data Fig. 1e-g. Cells were sorted into 8-well strips containing lysis buffer from the
SMART-Seq v4 kit (see below) with RNase inhibitor (0.17 U pl 1), immediately
frozen on dry ice, and stored at —80°C.

Note that the overall relative proportions of cell types in our dataset are not rep-
resentative of those in the intact brain because of the targeted sampling approach
using various Cre lines and possible cell type-specific differences in survival during
the isolation procedure.
cDNA amplification and library construction. We used the SMART-Seq v4 Ultra
Low Input RNA Kit for Sequencing (Takara, 634894) to reverse transcribe poly(A)
RNA and amplify full-length cDNA according to the manufacturer’s instructions.
We performed reverse transcription and cDNA amplification for 18 PCR cycles
in 8-well strips, in sets of 12-24 strips at a time. A small set of non-neuronal cell
samples was amplified by 21 PCR cycles instead of 18 (Supplementary Table 10). At
least 1 control strip was used per amplification set, which contained 4 wells without
cells and 4 wells with 10 pg control RNA. Control RNA was either Mouse Whole
Brain Total RNA (Zyagen, MR-201) or control RNA provided in the SMART-
Seq v4 kit. All samples proceeded through Nextera XT DNA Library Preparation
(Illumina FC-131-1096) using Nextera XT Index Kit V2 Set A (FC-131-2001).
Nextera XT DNA Library prep was performed according to manufacturer’s instruc-
tions except that the volumes of all reagents including cDNA input were decreased
t0 0.4x or 0.5x by volume. The replacement of Clontech’s SMARTer v.1%°, which
we used in our previous study?’, with SMART-Seq v.4 kit, which is based on Smart-
seq2%, increases the efficiency of gene detection. This allowed us to reduce the
median sequencing depth from approximately 8.7 million to 2.5 million reads per
cell while still detecting 9,500 genes per cell (median) compared to 7,800 previously
(Extended Data Fig. 2b). Subsampling of the reads to a median of 0.5 million per
cell results in similar gene detection per cell (>89% of genes detected, data not
shown), showing that we detect most of the genes at 2.5 million reads per cell.
Details are available in ‘Documentation’ on the Allen Institute data portal at: http://
celltypes.brain-map.org/.

Sequencing data processing and quality control. Fifty-base-pair paired-end reads
were aligned to GRCm38 (mm10) using a RefSeq annotation gff file retrieved
from NCBI on 18 January 2016 (https://www.ncbi.nlm.nih.gov/genome/anno-
tation_euk/all/). Sequence alignment was performed using STAR v2.5.3%! in
twopassMode. PCR duplicates were masked and removed using STAR option
‘bamRemoveDuplicates. Only uniquely aligned reads were used for gene quanti-
fication. Gene counts were computed using the R GenomicAlignments package®
sumarizeOverlaps function using ‘IntersectionNotEmpty’ mode for exonic and
intronic regions separately. In this study, we only used exonic regions for gene
quantification. Cells that met any one of the following criteria were removed:
<100,000 total reads, <1,000 detected genes (counts per million > 0), < 75%
of reads aligned to genome, or CG dinucleotide odds ratio > 0.5. Doublets were
removed by first classifying cells into broad classes of glutamatergic, GABAergic,
and non-neuronal based on known markers. For each class, we selected a set of
highly specific genes that are only present in this class compared to all other classes,
and computed the eigengene (the first principle component based on the given
gene set), normalized within the 0-1 range. Each cell was assigned to the class
with the maximum eigengene. For each class, we computed the mean and standard
deviation of the corresponding eigengene for cells outside this class. Any cell in
which the eigengene was more than three standard deviations above the mean for
the cells outside the class was assigned to be members of that class. On the basis
of this criterion, cells that belong to more than one class were defined as doublets.
Mapping reads to synthetic constructs. We mapped all non-genome-mapped
reads to sequences in Supplementary Table 8. To avoid ambiguous counting due to
stretches of sequence identity, we designated unique regions within these sequences
to count mRNAs of interest. We counted only reads for which at least one of the
paired ends had an overlap with the unique regions of at least 10 bp.

Clustering. Cells that passed quality control criteria were clustered using an
in-house developed iterative clustering R package hicat available via Github
(https://github.com/AllenInstitute/hicat). It was described partially in previous
studies®*3, and was modified to improve robustness and adapt to large numbers
of cells. In brief, all quality control qualified cells were grouped into very broad
categories using known markers, then clustered using high variance gene selection,
dimensionality reduction, dimension filtering, and Jaccard-Louvain or hierarchical
(Ward) clustering. This process was repeated within each resulting cluster until
no more child clusters met differential gene expression or cluster size termination
criteria. The entire clustering procedure was repeated 100 times using 80% of all
cells sampled at random, and the frequency with which cells co-cluster was used
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to generate a final set of clusters, again subject to differential gene expression and
cluster size termination criteria. A workflow diagram for this approach is presented
in Extended Data Fig. 2. The key strength of this approach is its ability to provide
high-resolution cell type categorization that withstands rigorous statistical tests to
ensure reproducibility and biological relevance of the results. Below, we provide
more details for the analysis carried out at each iteration of clustering:

1. Selection of high-variance genes. We first removed predicted gene models
(gene names that start with Gm), genes from the mitochondrial chromosome,
ribosomal genes, sex-specific genes, as well as genes that were detected in fewer
than four cells. To choose high variance genes, we used gene counts from each cell
to fit a Loess regression curve between average scaled gene counts and dispersion
(variance divided by mean). The regression residuals were then fit to a normal
distribution based on 25% and 75% quantiles to calculate P values and adjusted
P values (using Holm’s method), representing the probability that each gene had
higher than expected variance. Genes were ranked by adjusted P value.

2. Dimensionality reduction. We implemented two methods: principal compo-
nent analysis (PCA) and weighted gene co-expression network analysis (WGCNA).
In the PCA mode, top high variance genes with adjusted P < 0.5 were used to
compute principal components. The proportion of variance for all principal com-
ponents was converted to z-scores, and principal components with z-scores >2
were selected for clustering. In the WGCNA mode, the 4,000 genes with the most
significant P values were used as input for WGCNA to identify gene modules. Here,
we used a more relaxed criterion than in the PCA mode to allow more genes to
be included for gene module detection. To determine the discriminative power of
each module, we used the genes in each module to divide the cells into two clusters
using Jaccard-Louvain clustering® (for more than 4,000 cells) or a combination
of k-means and Ward’s hierarchical clustering (for <4,000 cells). After dividing
the cells into two clusters, we computed differential gene expression between the
two clusters (see ‘Defining differentially expressed genes’ section). We then com-
puted the differential expression score (deScore), defined as the sum of —logio
(adjusted P value) of all differentially expressed genes. For deScore calculations, the
maximum value each gene was allowed to contribute was 20. Only modules with
deScore greater than 150 were selected for use in downstream analysis, and module
eigengenes were computed for selected modules as reduced dimensions. Up to 20
top reduced dimensions were selected for both methods. The two dimensionality
reduction approaches are complementary: WGCNA detects rare clusters well,
segregates well biological and technical variation, and provides cleaner cluster
boundaries; PCA is more scalable to large datasets and captures combinatorial
marker expression patterns better than WGCNA.

3. Dimension filtering. We have identified systematic technical variation that
affects expression of hundreds of genes that we believe is primarily driven by the
quality of the single cell cDNA library. The first principal component of these genes
is highly correlated with the log-transform of the number of genes detected in each
cell, so we define the latter as the quality control eigen. We have also identified a
list of genes that contribute to the batch effect for the first set of experiments for
this study with subtle protocol differences. We computed batch eigen as the first
principal component based on these batch specific genes. We removed any princi-
pal components or module eigengenes that have correlation greater than 0.7 with
either the quality control eigen or the batch eigen.

4. Initial clustering. For clustering, we applied either the Jaccard-Louvain
method® using the Rphenograph package (for >4,000 cells), or Wards method
(for <4,000 cells). Although the Louvain algorithm scales well with large datasets,
it has been shown to have a resolution limit®, and small clusters tend to be missed.
Therefore, as a complementary approach, we applied Ward’s minimum variance
method for hierarchical clustering when fewer than 4,000 cells were to be clustered.
The initial number of clusters was set at twice the number of reduced dimensions
from step 3.

5. Cluster merging. To make sure the resulting clusters all have distinguishable
transcriptomic signatures, we defined differentially expressed genes between every
cluster and their two nearest neighbours in the reduced dimension space (using
Euclidean distance if there were 1 or 2 dimensions, or 1 minus Pearson correlation
for more dimensions). A pair of clusters was considered separable if the deScore
(described in step 2) for all differentially expressed genes was greater than 150.
If a cluster did not pass this criterion, it was merged with the nearest neighbour
cluster, and differentially expressed gene scores were recomputed using the merged
clusters. Clusters with fewer than four cells were also merged with their nearest
neighbours. This iterative merging process was repeated until all remaining clusters
were separable and contained at least 4 cells.

Steps 1-5 were repeated for each resulting cluster until no further partitions
were found.

6. Defining consensus clusters. To determine the robustness of the clustering
results, the entire clustering procedure was repeated 100 times using 80% of all cells
sampled at random in both the PCA and WGCNA modes. We then generated the
frequency matrix for co-clustering of every pair of cells in both modes. The final

cell-cell co-clustering matrix was defined as the element-by-element minimum of
these two matrices, which implies that if two cells belong to the same cluster by
one method, but to different clusters by another method, then their co-clustering
probability is considered low and they should be separated into different clus-
ters. We inferred the consensus clusters by iteratively splitting the co-clustering
matrix. In any given step, we used the co-clustering matrix as the similarity matrix
and performed clustering by either the Louvain (>4000 cells) or Ward’s algorithm
(<4,000 cells). We defined Ny as the average probabilities of cells within cluster k
to co-cluster with cells within cluster . We merged clusters k, [ if Ni,; > max(Nj,
Nj1) - 0.25. We merged remaining clusters based on differentially expressed genes
as described in step 5 using a deScore threshold of 150.

7. Cluster refinement. For each cell i, we computed the average probability that
it co-clustered with cells in each cluster k as M, and we reassigned every cell i
to the cluster k with maximum M. We repeated this process until convergence.

8. Exclusion of outlier clusters. After defining consensus clusters, we examined
our clustering results to identify outlier clusters that are likely to be due to technical
artefacts. These clusters fall into three categories: clusters of doublets, clusters of
low-quality cells, and clusters driven by batch effects. A cluster was defined as a
doublet cluster if it had signatures from two distinctive cell subclasses, for example,
smooth muscle cells and neurons. Low-quality clusters were defined as clusters
with significantly lower gene counts compared to the nearest cluster in taxonomy,
and with few or no significantly enriched genes. We also identified two clusters
that contain only retrogradely labelled cells. These two clusters are very similar
to two other distinctive clusters, but contain shared additional signatures that we
suspect were due to technical variation in retrograde experiments, so they were
annotated as outlier clusters.
Constructing the cell type taxonomy tree. To build the cell type tree, we com-
puted up to top 50 differentially expressed genes in both directions for every pair
of clusters, and assembled unique entrees into a marker list of 4,020 genes. We
calculated median expression of these marker genes per cluster as cluster centroid,
and applied hierarchical clustering with average linkage on the correlation matrix
of cluster centroids to infer the cell type taxonomy tree. The confidence for each
branch of the tree was estimated by the bootstrap resampling approach from the
R package pvclust v.2.0. A comparison between the uncollapsed dendrogram and
collapsing at >0.4 is presented in Extended Data Fig. 3. For display in figures, we
collapsed the dendrogram to branches with a confidence score >0.4.
Assigning core and intermediate cells. In our previous study, post-clustering,
we applied a random forest classifier to test our cluster assignments, and to define
core and intermediate cells?’. We found that random forest classification penalized
small clusters, so we used a nearest-centroid classifier, which assigns a cell to the
cluster whose centroid is the closest (with the highest correlation) to the cell. Here,
the cluster centroid is defined as the median expression of 4,020 differentially
expressed genes. To define core versus intermediate cells, we performed fivefold
cross-validation 100 times: in each round, the cells were randomly partitioned
into five groups, and cells in each group of 20% of the cells were classified by a
nearest-centroid classifier trained using the other 80% of the cells. A cell classified
to the same cluster more than 90 times was defined as a core cell, the others were
designated intermediate cells. We define 21,195 core cells and 2,627 intermediate
cells, which, in most cases, classify to only two clusters, one of which is the original
cluster (2,492 out of 2,627; 94.9%).
Assigning cluster names. The marker genes included in cluster names were
selected to be unique either individually or as a combination within our universe
of cell types. We considered differentially expressed genes (see ‘Defining differ-
entially expressed genes’ section below) at different levels of taxonomy: globally
specific, within-class specific, within-subclass specific, and specific compared to
the nearest sibling cluster. We also evaluated marker genes for the completeness of
expression within the cluster that would be named after that gene. From this list of
markers, we visually inspected marker specificity by examining gene expression
at the single-cell level in clusters of interest. Many genes satisfied criteria of good
marker genes, and therefore many alternatives for cluster naming exist. We gave
preferences to globally unique genes (for example, Chodl, included in the Sst-Chodl
cluster name) and markers that are expressed in all or a large proportion of cells
within the cluster. For example, Lamp5-Lxh6, could also be called Lamp5-Nkx2.1.
We chose Lxh6 as it is expressed in every cell of this cluster whereas Nkx2.1 is not,
although Nkx2.1 is expressed in a smaller number of cell types overall.
Defining differentially expressed genes. Differentially expressed genes were
detected using the R package limma v.3.30.13% using log,(CPM + 1) of expres-
sion values. We did not perform any tests of normality before performing dif-
ferentially expressed gene tests. Differentially expressed genes were defined as
genes with a more than twofold change and adjusted P < 0.01. We also required
these genes to have a relatively bimodal expression pattern, expressed predom-
inately in one cluster relative to the other. To do that, we computed P; as the
fraction of cells in cluster j expressing gene i with CPM > 1, and required upreg-
ulated genes i in cluster ¢, relative to ¢, to have P; > ql.th (q1.th=0.5), and
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(Pic1 — Pica)/max((P; 4, Pi ) > q.diff.th (q.diff.th=0.7). We define the deScore as
the sum of the —log;(adjusted P value) of all differentially expressed genes. For
deScore calculations, the maximum value each gene was allowed to contribute
was 20. The deScores used for Extended Data Fig. 14f are: 80, low stringency; 150,
standard; and 300, high stringency.

Retro-seq quality control and analysis. All retrogradely labelled cells were sub-
jected to the same experimental and data processing, quality control, and clustering
with all other quality control-qualified single-cell transcriptomes. Clustering was
performed blinded to the experimental source of retrogradely labelled cells. After
clustering, we performed an additional quality control step, in which we examined
the dissection images and annotated the injection sites for specificity. We excluded
single cell samples derived from incorrectly targeted injections or injections which
displayed significant labelling through needle tract to define the ‘annotated retro-
seq dataset’ (Extended Data Fig. 2e). Figure 3 and Extended Data Fig. 10 were
generated based on this dataset.

Correspondence between VISp and ALM glutamatergic clusters. To establish
correspondence in both directions, we classified VISp glutamatergic cells using
ALM glutamatergic clusters as training data, and vice versa. In both cases, we
trained the nearest centroid classifier based on common set of glutamatergic
markers (pool of top 50 differentially expressed genes in each direction between
glutamatergic clusters within VISp or within ALM) shared by both regions, and cal-
culated the fraction of cells in each VISp clusters that mapped to each of the ALM
clusters, and vice versa. For each cell, we computed the correlation score of the best
mapping cluster, and transformed the correlation scores into z-scores. If the average
z-score of cells from one cluster mapped to another cluster in the other region was
below —1.64 (roughly 5% confidence interval), this cluster was considered to be
unique to one region, with no corresponding cluster in the other region. For Fig. 2c,
we used matched types as described in the paragraph above, or split each type into
its ALM and VISp portions. Differentially expressed genes were calculated for all
pairwise comparisons between type-specific and region-specific portions within
glutamatergic samples and GABAergic samples. For each gene, two measures were
calculated: a ratio of proportions (proportion of cells in ALM — proportion in VISp
divided by whichever is higher, x axis) and the proportion of cells in whichever
region has a greater proportion of cells expressing each gene (y axis). Proportions
were computed separately for glutamatergic and GABAergic cells.

Assessing correspondence to the Paul et al. (2017)*® dataset. We mapped cells
from Gene Expression Omnibus (GEO) accession GSE92522% to our GABAergic
clusters using the nearest centroid classifier based on a set of shared GABAergic
markers that were detected in both datasets (expression >0). To estimate the
robustness of mapping, we repeated classification 100 times, each time using 80%
of randomly sampled markers, and computed the probabilities for every cell to
map to every reference cluster.

Assessing correspondence to Cadwell et al. (2016)°® Patch-seq dataset. We
mapped cells from the ArrayExpress accession E-MTAB-4092 dataset® to our
clusters (using only VISp cells) using the nearest centroid classifier with 100
sub-sampling rounds as described in paragraph above. Cells mapped to clusters
with probabilities <80% were mapped to the parent nodes of the mapped clusters
within the cell type hierarchy, until aggregated confidence at the parent node was
>80%.

Assessing correspondence to Hrvatin et al. (2018)*° dataset. We mapped VISp
cells from our dataset to GEO accession GSE102827%° using the same strategy
described above. We chose the Hrvatin et al.*’ dataset as reference because the
cells profiled by inDrop have lower gene detection, and cannot be mapped to our
high-resolution clusters confidently, whereas our cells can be mapped to clusters
from the previous dataset*’ with high confidence. To define early-response genes
(ERGs) and late-response genes (LRGs) within each cluster in the previously pub-
lished dataset?’, differentially expressed genes were computed between samples
with 1 h or 4 h after exposure to light versus no exposure. We used the approach
described above, with the following criteria: > twofold change, adjusted P < 0.01,
q1.th=0.05, q.diff.th =0.5. We computed average ERGs and LRGs for all our VISp
cells mapped to the this cluster, and plotted their distribution based on our cluster
annotation. We then used two-sided t-test to compute the significance for enrich-
ment/depletion of average ERG and LRG expression for each of our cell types
against the other types mapped to the same Hrvatin cluster, and defined significant
values as having a P < 0.01, after correction for multiple hypotheses using the Holm
method, and average fold change greater than 2.

Measures of heterogeneity within L4-1T-VISp-Rspol and between L4-1T-
VISp-Rspol and related clusters. To explore the heterogeneity of the L4-I1T-
VISp-Rspol cluster, which corresponds to three separate cell types in our previous
study®® (Extended Data Fig. 5), we first removed the quality control-dependent
gene expression signatures by regressing the expression of each gene against the
quality control index, defined as the ratio between the fraction of the reads mapped
to intronic regions over the reads mapped to exonic regions. Compared to other
cell types, L4 cells have a high fraction of intronic reads, likely indicating high
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nuclear content. There is also considerable variation of this quality control index
among L4 cells, which confounds other transcriptomic signatures. After normal-
ization, we performed WGCNA to find co-expressed gene modules within cells
from L4-IT-VISp-Rspol. We found that the eigengene for the top gene module
within L4-IT-VISp-Rspo1 corresponds to the gradient that drove separation of L4
subtypes previously?’. We then took the 50 cells at both ends of the eigengene-de-
fined gradient, trained a random forest classifier using the genes from the WGCNA
gene module, and tested it on the remaining cells to assign them to the ends of the
gradient. The classification probabilities by random forest strongly correlated with
the gradient eigengene (Extended Data Fig. 14d). We repeated the same analysis
between L4-IT-VISp-Rspol and the neighbouring L5-1T-VISp-Hsd11b1-Endou
cluster, and between L4-1T-VISp-Rspol and more distant L5-1T-VISp-Batf3
cluster. The eigengenes for these comparisons were defined as the first princi-
ple component of the top 50 differentially expressed genes in both directions. In
both cases, the classifier was trained on 50 sampled cells from each cluster based
on the selected differentially expressed genes, and tested on the remaining cells.
We applied Kolmogorov-Smirnov tests to determine whether the distribution of
classification probabilities is uniform for each of the three cases above. To account
for the differences in sample size, we sampled 400 tested L4-1T-VISp-Rspo1 cells
for the first case, and up to 200 cells from each cluster for the latter two cases. The
Kolmogorov-Smirnov test gave P=2.64 x 107> within the L4-IT-VISp-Rspol
gradient. Between neighbouring cluster L4-IT-VISp-Rspol and L5-1T-VISp-
Batf3, the random forest classification probabilities deviated from uniform dis-
tribution more significantly (Kolmogorov-Smirnov test P=4.37 x 10~'%). When
cells in the L4-IT-VISp-Rspol cluster were compared with the more distant L5—
IT-VISp-Batf3 cluster, the separation was clear (Kolmogorov-Smirnov test P=0):
classification probabilities have a bimodal distribution and cluster separation is dis-
crete. Finally, we split the L4-IT-VISp-Rspo1 cells into five bins based on random
forest classification probabilities and computed the differentially expressed genes
between the two bins at the both ends of the gradient and the bin at the middle of
the gradient (Extended Data Fig. 14d).

RNA FISH. We performed RNA FISH using RNAscope Multiplex Fluorescent v1
and v2 kits (Advanced Cell Diagnostics) according to the manufacturer’s proto-
cols. We used fresh frozen sections, which we prepared by dissecting fresh brains,
embedding the brains in optimum cutting temperature compound (OCT; Tissue-
Tek), and storing OCT blocks at —80 °C. Ten-micrometre coronal sections were
cut using a cryostat and collected on SuperFrost slides (ThermoFisher Scientific).
Sections were allowed to dry for 30 min at —20°C in a cryostat chamber, placed
into pre-chilled plastic slide boxes, wrapped in a zipped plastic bag, and stored
at —80°C. Slides were used within one week. Nuclei were labelled by DAPI and
nuclear signal was used to segment cells in images. We imaged mounted sections
at 40 on a confocal microscope (Leica SP8). Maximum projections of z-stacks
(1-pm intervals) were processed using CellProfiler (http://www.cellprofiler.org)®”
to identify nuclei, quantify the number of fluorescent spots, and assign fluorescent
spots to each cell/nucleus.

Immunohistochemistry. Mice were perfused with 4% paraformaldehyde (PFA).
Brains were dissected and post-fixed with 4% PFA at room temperature for
3-6 h followed by overnight at 4°C. Brains were rinsed with PBS and cryopro-
tected in 10% sucrose (w/v) in PBS with 0.1% sodium azide overnight at 4°C.
One-hundred-micrometre coronal slices were sectioned on a microtome (Leica,
SM2010R), washed with PBS, blocked with 5% normal donkey serum in PBS and
0.3% Triton X-100 (PBST) for 1 h, and stained with rabbit anti-dsRed (1:1,000,
Clontech, 632496) and goat anti-PVALB (1:1,000, Swant, PVG-213) overnight at
room temperature. Sections were washed three times in PBST and incubated with
anti-rabbit Alexa 594 (1:500, Jackson ImmunoResearch, 711-585-152) and anti-
goat Alexa 488 (1:500, Jackson ImmunoResearch, 705-605-147) for 4 h at room
temperature. Sections were washed three times with PBST and stained with 5 pM
DAPT in PBS for 20 min. After washing in PBST, sections were mounted onto slides,
allowed to dry, rehydrated in PBS, dipped in water and coverslips were added with
Fluoromount G (SouthernBiotech, 0100-01) mounting medium.

Data analysis and visualization software. Analysis and visualization of transcrip-
tomic data were performed using R v.3.3.0 and greater®, assisted by the Rstudio
IDE (Integrated Development Environment for R v.1.1.442; https://www.rstudio.
com/) as well as the following R packages: cowplot v.0.9.2 (https://rdrr.io/cran/
cowplot/), dendextend v.1.5.2%, dplyr v.0.7.4 (https://dplyr.tidyverse.org/), feather
v0.3.1 (https://rdrr.io/cran/feather/), FNN v.1.1 (https://cran.r-project.org/web/
packages/FNN/index.html), ggbeeswarm v.0.6.0 (https://cran.r-project.org/web/
packages/ggbeeswarm/index.html), ggExtra v.0.8 (https://rdrr.io/cran/ggEx-
tra/), ggplot2 v.2.2.17°, ggrepel v.0.7.0 (https://cran.r-project.org/web/packages/
ggrepel/vignettes/ggrepel.html), googlesheets v.0.2.2 (https://cran.r-project.org/
web/packages/googlesheets/vignettes/basic-usage.html), gridExtra v.2.3 (https://
cran.r-project.org/web/packages/gridExtra/index.html), Hmisc v.4.1-1 (https://
cran.r-project.org/web/packages/Hmisc/index.html), igraph v.1.2.1 (https://www.
rdocumentation.org/packages/igraph/versions/1.2.1), limma v.3.30.13%7!, Matrix
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v.1.2-12 (https://rdrr.io/rforge/Matrix/), matrixStats v.0.53.1 (https://cran.rstudio.
com/web/packages/matrixStats/index.html), pals v.1.5 (https://rdrr.io/cran/pals/),
purrr v.0.2.4 (https://purrr.tidyverse.org/), pvclust v.2.0-0 (http://stat.sys.i.kyoto-u.
ac.jp/prog/pvclust/), randomForest v.4.6-1472, reshape2 v.1.4.2 (https://www.
statmethods.net/management/reshape.html), Rphenograph v.0.99.1 (https://rdrr.
io/github/JinmiaoChenLab/Rphenograph/), Rtsne v.0.14. (https://cran.r-project.
org/web/packages/Rtsne/citation.html), Seurat v.2.1.073, viridis v.0.5.0 (https://rdrr.
io/cran/viridisLite/man/viridis.html), WGCNA v.1.6174, and xIsx v.0.5.7 (https://
cran.r-project.org/web/packages/xlsx/index.html). Scripts for the R implementation
of FIt-SNE”® were used for ¢-SNE analyses.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.

Code availability. Software code used for data analysis and visualization is available
from GitHub at https://github.com/AllenInstitute/tasic2018analysis/. An R package
for iterative clustering (hicat) is available on GitHub at https://github.com/
AllenInstitute/scrattch.hicat. The dataset is available for download and browsing on
the Allen Institute for Brain Science website: http://celltypes.brain-map.org/rnaseq.
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