Review Article | Published:

Magnetism in two-dimensional van der Waals materials

Naturevolume 563pages4752 (2018) | Download Citation

Abstract

The discovery of materials has often introduced new physical paradigms and enabled the development of novel devices. Two-dimensional magnetism, which is associated with strong intrinsic spin fluctuations, has long been the focus of fundamental questions in condensed matter physics regarding our understanding and control of new phases. Here we discuss magnetic van der Waals materials: two-dimensional atomic crystals that contain magnetic elements and thus exhibit intrinsic magnetic properties. These cleavable materials provide the ideal platform for exploring magnetism in the two-dimensional limit, where new physical phenomena are expected, and represent a substantial shift in our ability to control and investigate nanoscale phases. We present the theoretical background and motivation for investigating this class of crystals, describe the material landscape and the current experimental status of measurement techniques as well as devices, and discuss promising future directions for the study of magnetic van der Waals materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lee, P. A. et al. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

  2. 2.

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

  3. 3.

    Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).

  4. 4.

    Berezinskii, V. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP 32, 493–500 (1971).

  5. 5.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

  6. 6.

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

  7. 7.

    Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

  8. 8.

    Zak, J., Moog, E. R., Liu, C. & Bader, S. D. Universal approach to magneto-optics. J. Magn. Magn. Mater. 89, 107–123 (1990).

  9. 9.

    Arnold, C. S., Dunlavy, M. & Venus, D. Magnetic susceptibility measurements of ultrathin films using the surface magneto-optic Kerr effect: optimization of the signal-to-noise ratio. Rev. Sci. Instrum. 68, 4212–4216 (1997).

  10. 10.

    Elmers, H.-J. et al. Critical behavior of the uniaxial ferromagnetic monolayer Fe(110) on W(110). Phys. Rev. B 54, 15224–15233 (1996).

  11. 11.

    Park, J.-G. Opportunities and challenges of two-dimensional magnetic van der Waals materials: magnetic graphene? J. Phys. Condens. Matter 28, 301001 (2016). This paper highlighted the importance of magnetic vdW materials and the huge potential of this new class of materials.

  12. 12.

    Roldán, R., Castellanos-Gomez, A., Cappelluti, E. & Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 27, 313201 (2015).

  13. 13.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

  14. 14.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

  15. 15.

    Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

  16. 16.

    Sachs, B. et al. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys. Rev. B 88, 201402 (2013).

  17. 17.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. (2018). This study demonstrated the controllability of 2D magnetism in the magnetic vdW material CrI 3.

  18. 18.

    Samarth, N. Magnetism in flatland. Nature 546, 216–218 (2017).

  19. 19.

    Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 35002 (2017).

  20. 20.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). This study demonstrated the layer dependence of the ferromagnetic transition in the magnetic vdW material CrI 3 as a function of layer number.

  21. 21.

    Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016). This work showed that one can exfoliate an atomically thin monolayer of the antiferromagnetic vdW material FePS 3 and demonstrated the Onsanger solution for a real magnetic vdW material.

  22. 22.

    Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 31009 (2016).

  23. 23.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). This study demonstrated the layer dependence of the ferromagnetic transition in the magnetic vdW material Cr 2 Ge 2 Te 6 as a function of layer number.

  24. 24.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

  25. 25.

    O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

  26. 26.

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

  27. 27.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  28. 28.

    Williams, T. J. et al. Magnetic correlations in the quasi-2D semiconducting ferromagnet CrSiTe3. Phys. Rev. B 92, 144404 (2015).

  29. 29.

    Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

  30. 30.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Preprint at https://arxiv.org/abs/1803.02038 (2018).

  31. 31.

    Kuo, C. T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

  32. 32.

    Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

  33. 33.

    Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

  34. 34.

    Abramchuk, M. et al. Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry. Adv. Mater. https://doi.org/10.1002/adma.201801325 (2018).

  35. 35.

    Ando, K., Takahashi, K., Okuda, T. & Umehara, M. Magnetic circular dichroism of zinc-blende-phase MnTe. Phys. Rev. B 46, 12289–12297 (1992).

  36. 36.

    Lange, M. et al. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K. Rev. Sci. Instrum. 88, 123705 (2017).

  37. 37.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

  38. 38.

    Song, T. et al. Giant tunnelling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

  39. 39.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

  40. 40.

    Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

  41. 41.

    Burch, K. S., Awschalom, D. D. & Basov, D. N. Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008).

  42. 42.

    Sandilands, L. J. et al. Stability of exfoliated Bi2Sr2DyxCa1−xCu2O8+δ studied by Raman microscopy. Phys. Rev. B 82, 064503 (2010).

  43. 43.

    Nasu, J., Knolle, J., Kovrizhin, D. L., Motome, Y. & Moessner, R. Fermionic response from fractionalization in an insulating two-dimensional magnet. Nat. Phys. 12, 912–915 (2016).

  44. 44.

    Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

  45. 45.

    An, K. et al. Magnons and phonons optically driven out of local equilibrium in a magnetic insulator. Phys. Rev. Lett. 117, 107202 (2016).

  46. 46.

    Wang, Z. K., Lim, H. S., Ng, S. C., Özyilmaz, B. & Kuok, M. H. Brillouin scattering study of low-frequency bulk acoustic phonons in multilayer graphene. Carbon 46, 2133–2136 (2008).

  47. 47.

    Worledge, D. C. & Geballe, T. H. Magnetoresistive double spin filter tunnel junction. J. Appl. Phys. 88, 5277–5279 (2000).

  48. 48.

    Miao, G. X., Müller, M. & Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 102, 076601 (2009).

  49. 49.

    Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

  50. 50.

    Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

  51. 51.

    Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x films. Phys. Rev. Lett. 107, 027001 (2011).

  52. 52.

    Nojima, T. et al. Hole reduction and electron accumulation in YBa2Cu3Oy thin films using an electrochemical technique: evidence for an n-type metallic state. Phys. Rev. B 84, 020502 (2011).

  53. 53.

    Ahn, C. H., Triscone, J.-M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

  54. 54.

    Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006).

  55. 55.

    Xing, W. et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater. 4, 24009 (2017).

  56. 56.

    Chen, Y. et al. Role of oxygen in ionic liquid gating on two-dimensional Cr2Ge2Te6 : a non-oxide material. ACS Appl. Mater. Inter. 10, 1383–1388 (2018).

  57. 57.

    Irkhin, V. Y. & Katanin, A. A. Kosterlitz–Thouless and magnetic transition temperatures in layered magnets with a weak easy-plane anisotropy. Phys. Rev. B 60, 2990–2993 (1999).

  58. 58.

    Lee, M. J. et al. Synaptic devices implemented with two-dimensional layered single crystal chromium thiophosphate (CrPS4). NPG Asia Mater. 10, 23–30 (2018).

  59. 59.

    Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

  60. 60.

    Lee, K. H., Chung, S. B., Park, K. & Park, J.-G. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice. Phys. Rev. B 97, 180401 (2018).

Download references

Acknowledgements

We acknowledge useful discussions with D. Xiao and X. Xu. K.S.B. was supported by the National Science Foundation through grant DMR-1709987 and D.M. acknowledges support from the National Science Foundation under grant DMR-1410428. J.-G.P. was supported by the Institute for Basic Science (IBS) of Korea (IBS-R009-G1).

Reviewer information

Nature thanks M. Katsnelson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Physics Department, Boston College, Boston, MA, USA

    • Kenneth S. Burch
  2. Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA

    • David Mandrus
  3. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    • David Mandrus
  4. Center for Correlated Electron Systems, Institute for Basic Science, Seoul, South Korea

    • Je-Geun Park
  5. Department of Physics and Astronomy, Seoul National University, Seoul, South Korea

    • Je-Geun Park

Authors

  1. Search for Kenneth S. Burch in:

  2. Search for David Mandrus in:

  3. Search for Je-Geun Park in:

Contributions

J.-G.P. initiated the project and all authors wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Je-Geun Park.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0631-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.