Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Magnetism in two-dimensional van der Waals materials

Abstract

The discovery of materials has often introduced new physical paradigms and enabled the development of novel devices. Two-dimensional magnetism, which is associated with strong intrinsic spin fluctuations, has long been the focus of fundamental questions in condensed matter physics regarding our understanding and control of new phases. Here we discuss magnetic van der Waals materials: two-dimensional atomic crystals that contain magnetic elements and thus exhibit intrinsic magnetic properties. These cleavable materials provide the ideal platform for exploring magnetism in the two-dimensional limit, where new physical phenomena are expected, and represent a substantial shift in our ability to control and investigate nanoscale phases. We present the theoretical background and motivation for investigating this class of crystals, describe the material landscape and the current experimental status of measurement techniques as well as devices, and discuss promising future directions for the study of magnetic van der Waals materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical phenomena that can be studied with magnetic vdW materials.
Fig. 2: Optical probes of magnetism in two dimensions.
Fig. 3: Electrical measurements and tuning of 2D magnetism.

Similar content being viewed by others

References

  1. Lee, P. A. et al. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  CAS  Google Scholar 

  2. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Berezinskii, V. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP 32, 493–500 (1971).

    ADS  MathSciNet  Google Scholar 

  5. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article  ADS  CAS  Google Scholar 

  7. Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  8. Zak, J., Moog, E. R., Liu, C. & Bader, S. D. Universal approach to magneto-optics. J. Magn. Magn. Mater. 89, 107–123 (1990).

    Article  ADS  Google Scholar 

  9. Arnold, C. S., Dunlavy, M. & Venus, D. Magnetic susceptibility measurements of ultrathin films using the surface magneto-optic Kerr effect: optimization of the signal-to-noise ratio. Rev. Sci. Instrum. 68, 4212–4216 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Elmers, H.-J. et al. Critical behavior of the uniaxial ferromagnetic monolayer Fe(110) on W(110). Phys. Rev. B 54, 15224–15233 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Park, J.-G. Opportunities and challenges of two-dimensional magnetic van der Waals materials: magnetic graphene? J. Phys. Condens. Matter 28, 301001 (2016). This paper highlighted the importance of magnetic vdW materials and the huge potential of this new class of materials.

    Article  Google Scholar 

  12. Roldán, R., Castellanos-Gomez, A., Cappelluti, E. & Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 27, 313201 (2015).

    Article  ADS  Google Scholar 

  13. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  ADS  Google Scholar 

  14. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  Google Scholar 

  15. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    Article  CAS  Google Scholar 

  16. Sachs, B. et al. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys. Rev. B 88, 201402 (2013).

    Article  ADS  Google Scholar 

  17. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. (2018). This study demonstrated the controllability of 2D magnetism in the magnetic vdW material CrI 3.

  18. Samarth, N. Magnetism in flatland. Nature 546, 216–218 (2017).

    Article  ADS  CAS  Google Scholar 

  19. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 35002 (2017).

    Article  Google Scholar 

  20. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). This study demonstrated the layer dependence of the ferromagnetic transition in the magnetic vdW material CrI 3 as a function of layer number.

    Article  ADS  CAS  Google Scholar 

  21. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016). This work showed that one can exfoliate an atomically thin monolayer of the antiferromagnetic vdW material FePS 3 and demonstrated the Onsanger solution for a real magnetic vdW material.

    Article  ADS  CAS  Google Scholar 

  22. Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 31009 (2016).

    Article  Google Scholar 

  23. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). This study demonstrated the layer dependence of the ferromagnetic transition in the magnetic vdW material Cr 2 Ge 2 Te 6 as a function of layer number.

    Article  ADS  CAS  Google Scholar 

  24. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Article  ADS  CAS  Google Scholar 

  25. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Article  ADS  Google Scholar 

  26. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  27. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  28. Williams, T. J. et al. Magnetic correlations in the quasi-2D semiconducting ferromagnet CrSiTe3. Phys. Rev. B 92, 144404 (2015).

    Article  ADS  Google Scholar 

  29. Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

    Article  Google Scholar 

  30. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Preprint at https://arxiv.org/abs/1803.02038 (2018).

  31. Kuo, C. T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

    Article  ADS  CAS  Google Scholar 

  32. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

    Article  ADS  CAS  Google Scholar 

  33. Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    Article  ADS  Google Scholar 

  34. Abramchuk, M. et al. Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry. Adv. Mater. https://doi.org/10.1002/adma.201801325 (2018).

    Article  Google Scholar 

  35. Ando, K., Takahashi, K., Okuda, T. & Umehara, M. Magnetic circular dichroism of zinc-blende-phase MnTe. Phys. Rev. B 46, 12289–12297 (1992).

    Article  ADS  CAS  Google Scholar 

  36. Lange, M. et al. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K. Rev. Sci. Instrum. 88, 123705 (2017).

    Article  ADS  CAS  Google Scholar 

  37. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  ADS  CAS  Google Scholar 

  38. Song, T. et al. Giant tunnelling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  ADS  CAS  Google Scholar 

  39. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  ADS  CAS  Google Scholar 

  40. Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

    Article  ADS  CAS  Google Scholar 

  41. Burch, K. S., Awschalom, D. D. & Basov, D. N. Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008).

    Article  ADS  CAS  Google Scholar 

  42. Sandilands, L. J. et al. Stability of exfoliated Bi2Sr2DyxCa1−xCu2O8+δ studied by Raman microscopy. Phys. Rev. B 82, 064503 (2010).

    Article  ADS  Google Scholar 

  43. Nasu, J., Knolle, J., Kovrizhin, D. L., Motome, Y. & Moessner, R. Fermionic response from fractionalization in an insulating two-dimensional magnet. Nat. Phys. 12, 912–915 (2016).

    Article  Google Scholar 

  44. Bozhko, D. A. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

    Article  CAS  Google Scholar 

  45. An, K. et al. Magnons and phonons optically driven out of local equilibrium in a magnetic insulator. Phys. Rev. Lett. 117, 107202 (2016).

    Article  ADS  Google Scholar 

  46. Wang, Z. K., Lim, H. S., Ng, S. C., Özyilmaz, B. & Kuok, M. H. Brillouin scattering study of low-frequency bulk acoustic phonons in multilayer graphene. Carbon 46, 2133–2136 (2008).

    Article  CAS  Google Scholar 

  47. Worledge, D. C. & Geballe, T. H. Magnetoresistive double spin filter tunnel junction. J. Appl. Phys. 88, 5277–5279 (2000).

    Article  ADS  CAS  Google Scholar 

  48. Miao, G. X., Müller, M. & Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 102, 076601 (2009).

    Article  ADS  Google Scholar 

  49. Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    Article  ADS  Google Scholar 

  50. Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

    Article  ADS  CAS  Google Scholar 

  51. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x films. Phys. Rev. Lett. 107, 027001 (2011).

    Article  ADS  Google Scholar 

  52. Nojima, T. et al. Hole reduction and electron accumulation in YBa2Cu3Oy thin films using an electrochemical technique: evidence for an n-type metallic state. Phys. Rev. B 84, 020502 (2011).

    Article  ADS  Google Scholar 

  53. Ahn, C. H., Triscone, J.-M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

    Article  ADS  CAS  Google Scholar 

  54. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006).

    Article  ADS  CAS  Google Scholar 

  55. Xing, W. et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater. 4, 24009 (2017).

    Article  Google Scholar 

  56. Chen, Y. et al. Role of oxygen in ionic liquid gating on two-dimensional Cr2Ge2Te6 : a non-oxide material. ACS Appl. Mater. Inter. 10, 1383–1388 (2018).

    Article  CAS  Google Scholar 

  57. Irkhin, V. Y. & Katanin, A. A. Kosterlitz–Thouless and magnetic transition temperatures in layered magnets with a weak easy-plane anisotropy. Phys. Rev. B 60, 2990–2993 (1999).

    Article  ADS  CAS  Google Scholar 

  58. Lee, M. J. et al. Synaptic devices implemented with two-dimensional layered single crystal chromium thiophosphate (CrPS4). NPG Asia Mater. 10, 23–30 (2018).

    Article  ADS  CAS  Google Scholar 

  59. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  CAS  Google Scholar 

  60. Lee, K. H., Chung, S. B., Park, K. & Park, J.-G. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice. Phys. Rev. B 97, 180401 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with D. Xiao and X. Xu. K.S.B. was supported by the National Science Foundation through grant DMR-1709987 and D.M. acknowledges support from the National Science Foundation under grant DMR-1410428. J.-G.P. was supported by the Institute for Basic Science (IBS) of Korea (IBS-R009-G1).

Reviewer information

Nature thanks M. Katsnelson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.-G.P. initiated the project and all authors wrote the manuscript.

Corresponding author

Correspondence to Je-Geun Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burch, K.S., Mandrus, D. & Park, JG. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018). https://doi.org/10.1038/s41586-018-0631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0631-z

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing