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Type 1 diabetes (T1D) is an autoimmune disease that targets 
pancreatic islet beta cells and incorporates genetic and 
environmental factors1, including complex genetic elements2, 
patient exposures3 and the gut microbiome4. Viral infections5 
and broader gut dysbioses6 have been identified as potential 
causes or contributing factors; however, human studies have not 
yet identified microbial compositional or functional triggers that 
are predictive of islet autoimmunity or T1D. Here we analyse 
10,913 metagenomes in stool samples from 783 mostly white, non-
Hispanic children. The samples were collected monthly from three 
months of age until the clinical end point (islet autoimmunity or 
T1D) in the The Environmental Determinants of Diabetes in the 
Young (TEDDY) study, to characterize the natural history of the 
early gut microbiome in connection to islet autoimmunity, T1D 
diagnosis, and other common early life events such as antibiotic 
treatments and probiotics. The microbiomes of control children 
contained more genes that were related to fermentation and 
the biosynthesis of short-chain fatty acids, but these were not 
consistently associated with particular taxa across geographically 
diverse clinical centres, suggesting that microbial factors associated 
with T1D are taxonomically diffuse but functionally more coherent. 
When we investigated the broader establishment and development 
of the infant microbiome, both taxonomic and functional profiles 
were dynamic and highly individualized, and dominated in the 
first year of life by one of three largely exclusive Bifidobacterium 
species (B. bifidum, B. breve or B. longum) or by the phylum 
Proteobacteria. In particular, the strain-specific carriage of genes 
for the utilization of human milk oligosaccharide within a subset 
of B. longum was present specifically in breast-fed infants. These 
analyses of TEDDY gut metagenomes provide, to our knowledge, 
the largest and most detailed longitudinal functional profile of the 
developing gut microbiome in relation to islet autoimmunity, T1D 
and other early childhood events. Together with existing evidence 
from human cohorts7,8 and a T1D mouse model9, these data support 
the protective effects of short-chain fatty acids in early-onset human 
T1D.

Recent literature has linked several facets of gut health with the 
onset of T1D in humans and rodent models4,6,10. Altered intestinal 
microbiota in connection to T1D has been reported in Finnish7,8,11,12, 
German13, Italian14, Mexican15, American (Colorado)16 and Turkish17 
children. Common findings include increased numbers of Bacteroides 

species, and deficiency of bacteria that produce short-chain fatty 
acids (SCFAs)7,8 in cases of T1D or islet autoimmunity (IA)8,11,15,18. 
Corroborating these findings, decreased levels of SCFA-producing 
bacteria were found in adults with type 2 diabetes (T2D)19. In addi-
tion, increased intestinal permeability14 and decreased microbial diver-
sity12 after IA but before T1D diagnosis have been reported. Studies 
using the nonobese diabetic (NOD) mouse model have determined 
immune mechanisms that mediate the protective effects of SCFAs9 
and the microbiome-linked sex bias in autoimmunity20. NOD mice 
fed specialized diets resulting in high bacterial release of the SCFAs 
acetate and butyrate were almost completely protected from T1D9. A 
study in a streptozotocin-induced T1D mouse model demonstrated  
that bacterial products recognized in pancreatic lymph nodes contribute  
to pathogenesis21.

Even in the absence of immune perturbation, the first few weeks, 
months and years of life represent a unique human microbial environ-
ment that has only recently been detailed22,23. Infants have a markedly 
different gut microbial profile from adults, characterized by a dis-
tinct taxonomic profile, greater proportion of aerobic energy harvest 
metabo lism, and more extreme dynamic change24. These differences 
gradually fade over the first few years of life, particularly in response to 
the introduction of solid food, and individual microbial developmental  
trajectories are influenced by environment, delivery mode, breast (versus  
formula) feeding, and antibiotics25–27. Most studies that address the 
development of the gut microbiome, both generally and in associa-
tion with T1D, have used gene analysis of 16S rRNA, which leaves 
open the question of functional and strain-specific differences that are 
not easily detected by this technology that might contribute to disease 
pathogenesis12.

Bridging this gap is one goal of the The Environmental Determinants 
of Diabetes in the Young (TEDDY) study, a prospective study that 
aims to identify environmental causes of T1D28. It includes six clinical  
research centres in the United States (Colorado, Georgia/Florida and 
Washington) and Europe (Finland, Germany and Sweden), which 
together have recruited several thousand newborns with a genetic  
predisposition for T1D or first-degree relative(s) with T1D. This has 
enabled the TEDDY study to collect a range of biospecimens, including 
monthly stool samples starting at three months of age, coupled with 
extensive clinical and personal data such as diet, illnesses, medications 
and other life experiences. To characterize microbial, environmental, 
genetic, immunological and additional contributors to the development 
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of T1D, the TEDDY study group further assembled nested case–control 
studies for IA (n = 418 case–control pairs) and T1D (n = 114)29. Case–
control pairs were matched by clinical centre, sex and family history of 
T1D, which are all known confounding factors for T1D susceptibility 
and microbiome composition.

Here, we assessed 783 children followed from three months to up 
to five years of age from six clinical centres in four countries (Finland, 
Germany, Sweden and the United States) who either progressed to 
persistent IA or T1D or were matched as controls (Fig. 1a, b, Extended 
Data Table 1). Stool samples were collected, on average, monthly start-
ing at three months of age and continuing until the clinical end point 
(IA or T1D). This study focused solely on analysing metagenomic 
sequencing data (n = 10,903 samples, n = 783 subjects), while a com-
panion paper by Stewart et al.30 interrogated corresponding 16S rRNA 
amplicon sequencing information.

We first investigated the taxonomic composition of early gut metage-
nomes at the species level. Principal coordinate analysis ordination 
of Bray–Curtis beta diversities showed a strong longitudinal gradient  
and marked heterogeneity among the earliest samples (Fig. 2a, 
Extended Data Fig. 1a–k, Supplementary Note 1). Permutational anal-
ysis of variance (ANOVA) of Bray–Curtis beta diversities indicated 
that inter-subject differences explained 35% of microbial taxonomic 
variation (permutation test, P < 0.001, 1,000 permutations), followed 
by age at stool sampling at roughly 4% of variance (P < 0.001). Using 
cross-sectional analysis to test for associations between taxonomic 
beta diversities and other collected metadata, we found that in addi-
tion to subject ID and age, geographical location and breastfeeding 
had strong and systematic effects on the composition of the micro-
bial community (Supplementary Table 1, Extended Data Fig. 2a–d, 
Supplementary Note 1). To investigate the stability and individual-
ity of the microbial profiles further, we compared intra- and inter- 
subject Bray–Curtis beta diversities. The gap between individual  
stability and similarity within or across clinical centres was largest at 

the beginning of the sampling period, indicating that the children had 
particularly dissimilar micro biota during these early months (Fig. 2b, 
Supplementary Note 1). Finally, we tested microbial alpha diversity 
(Shannon’s diversity index) of taxonomic profiles for associations with 
collected metadata, and found that the cessation of breastfeeding had 
the largest effect (ANOVA, partial η2 = 0.053) in the accrual of alpha 
diversity in early life (Supplementary Table 2, Extended Data Fig. 3a–e, 
Supplementary Note 1).

We next investigated the effects of antibiotics on the early life micro-
biome. Courses of oral antibiotics disrupted microbial stability, with a 
larger effect in the earliest comparisons (Fig. 2c, Extended Data Fig. 4a–f,  
Extended Data Table 2, Supplementary Note 2). Previous studies have 
found Bifidobacterium species to be especially vulnerable to antibiotics31,32,  
leading us to investigate how antibiotic perturbations influenced these 
common dominant members of the early gut. Comparing microbial 
relative abundances before and after antibiotics (assuming that the 
given species was present in the preceding sample), we saw a decrease 
in the abundances of the Bifidobacterium members B. bifidum, B. 
pseudocatenulatum, B. adolescentis, B. dentium and B. catenulatum, 
whereas B. longum and B. breve did not systematically decline owing 
to antibiotics (Fig. 2d), suggesting that certain Bifidobacterium species 
are particularly susceptible to out-competition by other community 
members after depletion by antibiotics. Given their dominance in the 
typical developing gut microbiota and finely tuned balance of metabolic 
interactions with breast milk, this finding underscores the importance 
of approaching antibiotic prescriptions in early childhood with care, 
especially during breastfeeding.

Accompanying our taxonomic profiling, functional profiling of these 
metagenomes suggested the development of a consistent microbial 
functional core during infancy, with a smaller subject-specific variable  
functional pool (Extended Data Fig. 5a, b, Supplementary Note 3). 
As in most microbial community studies33, microbial gene families 
of uncharacterized function made up a substantial fraction of these 
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Fig. 1 | More than 10,000 longitudinal gut metagenomes from the 
TEDDY T1D cohort. We analysed 10,913 metagenomes collected 
longitudinally from 783 children (415 controls, 267 seroconverters, and 
101 diagnosed with T1D) approximately monthly over the first five years 
of life. a, Subjects were recruited at six clinical centres (Finland, Sweden, 
Germany, Washington, Georgia and Colorado). Primary end points were 
seroconversion (defined as persistent confirmed IA) and T1D diagnosis. 

Additional metadata analysed for subjects and samples included the status 
of breastfeeding, birth mode, probiotics, antibiotics, formula feeding, 
and other dietary covariates. b, Overview of stool samples collected and 
microbiome development as summarized by Shannon’s alpha diversity and 
stratified by end point. Median number of samples per individual n = 12 
(healthy controls n = 10, seroconverters n = 13, T1D cases n = 16).
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profiles, averaging roughly 50% based on Gene Ontology34 annotations 
(Extended Data Fig. 5c) and more than 90%  based on more function-
ally specific MetaCyc pathways (Extended Data Fig. 5d). We observed 
an increasing longitudinal trend in the proportion of unmapped reads 
(Extended Data Fig. 5e, Pearson’s r = 0.318, P < 2.2 × 10−16). However, 
within the reads that mapped to either microbial pangenomes or known 
protein sequences (the proportion of which decreased with age), we 
saw an increase in the proportion of reads with MetaCyc annotation, 
mainly during the first year (Extended Data Fig. 5f, Pearson r = 0.391, 
P < 2.2 × 10−16). This suggests that although the early life microbiome 
is relatively well-covered by current microbial reference genomes, less 
functional and biochemical characterization has been carried out on 
gene families within these microorganisms, which will thus particularly 
benefit from future work.

In addition to broadly conserved and subject-specific functions, we 
identified a range of microbial metabolic enzymes that consistently 
increased or decreased in abundance over the first year of life, parallel-
ing shifts in community structure and infant diet (Fig. 3, Supplementary 
Note 3, Supplementary Table 3). For example, the enzyme l-lactate 
dehydrogenase (1.1.1.27), which is well-characterized in Bifidobacteria 
for its role in milk fermentation35, was among the most consistently 
declining enzymes over this period, notably coinciding with the cessa-
tion of breastfeeding in many infants (from 73% breastfed at month 3 
to 28% at year 1). Conversely, the enzyme transketolase (2.2.1.1), which 
has been implicated previously36 in the metabolism of fibre, was among 
the most consistently increasing enzymes, which also coincided with 
increased incorporation of solid food (a component of 53% of infants’ 
diets at month 3 versus 100% at year 1). Hence, these notable changes 
in community functional potential highlight the unique metabolic 
environment of the early infant gut, and the subsequent transition to 
a more adult-like gut microbiome that is adapted to variable, fermen-
tative energy sources.

Combining taxonomic and functional profiles to test for differences 
between cases and controls, we used linear mixed-effects modelling 
and identified a relatively small number of individual taxonomic and 
functional features that were associated with case–control outcome 
(Supplementary Table 4), most with borderline statistical significance 
(false discovery rate (FDR) corrected q-values indicated below). We 
confirmed separation between cases and controls by random forest 
classifiers (Extended Data Fig. 6a, b, Supplementary Note 4). In the 
IA case–control cohort, healthy controls contained higher levels of 
Lactobacillus rhamnosus (q = 0.055), supporting protection against 
IA by early probiotic supplementation37 (Extended Data Fig. 6c, d, 
Supplementary Note 5). IA controls also had more Bifidobacterium 
dentium (q = 0.054), whereas IA cases had on average higher abun-
dance of Streptococcus group mitis/oralis/pneumoniae species 
(q = 0.11). In T1D case–control comparisons, controls had higher 
levels of Streptococcus thermophilus (q = 0.078) and Lactococcus lactis 
(q = 0.094) species, both common in dairy products, whereas cases 
contained higher levels of species such as Bifidobacterium pseudoca-
tenulatum (q = 0.078), Roseburia hominis (q = 0.11) and Alistipes shahii 
(q = 0.14). Even though our modelling approach controlled for regional 
differences in clinical centres, we found additional but often weak asso-
ciations with outcome in some clinical centres when tested separately 
(Supplementary Table 4). Finnish IA cases had more Streptococcus 
group mitis/oralis/pneumoniae species (q = 0.0008), IA controls from 
Colorado had more Streptococcus thermophilus (q = 0.0059), and 
Swedish IA cases contained more Bacteroides vulgatus (q = 0.090).

Pathways with the highest statistical significance in case–control 
comparisons were related to bacterial fermentation (Supplementary 
Table 4). The superpathway of fermentation (MetaCyc identifier 
PWY4LZ-257) was increased in controls in the T1D cohort (q = 0.019) 
and Finnish IA cohort (q = 0.049). SCFAs such as butyrate, acetate and 
propionate are common by-products of bacterial fermentation, and 
butyrate and acetate protected NOD mice against T1D9. Consistently, 
we observed that several bacterial pathways that contribute to the bio-
synthesis of short-chain fatty acids were increased in healthy controls. 

Among pathways involved in butyrate production, the degradation 
of l-arginine, putrescine and 4-aminobutanoate (ARGDEG-PWY) 
superpathway was increased in T1D controls cohort-wide (q = 0.043), 
whereas the fermentation of acetyl coenzyme A to butanoate (PWY-
5676) was more abundant in the Finnish T1D controls (q = 0.053). The 
degradation of acetylene (P161-PWY), which contributes to acetate 
production, was increased in T1D controls cohort-wide (q = 0.14), and 
the degradation of l-1,2-propanediol (PWY-7013), which is involved 
in propionate biosynthesis, was higher in the German T1D controls 
(q = 0.019). These findings support existing evidence for the protective 
effects of SCFAs in human T1D7,8 and T2D19 cohorts and the NOD 
mouse model9.

As reflected by the community-level analyses, human milk with its 
pro- and prebiotic functions is one of the main factors that deter-
mine the community composition of the infant gut microbiome. 
Bifidobacterium longum subsp. infantis is a particularly versatile 
degrader of human milk oligosaccharide (HMO) that is often found 
in stool samples collected during breastfeeding38. By following the 
families representing genes in the B. longum subsp. infantis HMO gene 
cluster39,40 in our data, we found that an additional 30 bacterial species 
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carried at least one homologue with more than 50% sequence iden-
tity to one or more HMO utilization genes (Supplementary Table 5). 
As expected, many Bifidobacteria carried several homologues, but  
surprisingly three Enterococcus species (E. casseliflavus, E. faecalis and 
E. faecium) also carried seven or more homologues (Supplementary 
Table 5).

To identify strain-level adaptation similar to B. longum subsp. 
infantis, we further examined whether any of these genes showed con-
trasting prevalence between samples collected during breastfeeding 
and after weaning, given that the carrier species itself was present. In 
total, 41 gene families were observed more often during breastfeeding 
(Supplementary Table 5, test of proportions, adjusted P < 0.001); most 
(37 out of 41) were carried by B. longum (Fig. 4), and B. pseudoca-
tenulatum contained four such gene families (Extended Data Fig. 7, 
Supplementary Table 5). In samples with B. longum, this implicated a 
clear strain shift after weaning, when fewer B. longum strains carried 
these genes (Fig. 4). In samples with B. pseudocatenulatum, four gene 
families showed a similar but less contrasting pattern (Extended Data 
Fig. 7). Overall, these observations identify new candidate species that 
contribute to HMO processing or exploitation, and link strain compo-
sition to specific driving molecular functions that potentially explain 
selective sweeps during microbiome development, in this case specif-
ically related to breastfeeding.

Despite ample sample size, scrutiny of the study design, and thor-
ough statistical analyses, most of the taxonomic and functional signals 

we detected in case–control comparisons were modest in effect size 
and statistical significance. This could be due to several reasons— 
differences between T1D endotypes, temporally diffuse signals, 
geographical heterogeneity, or lack of stool samples for the first two 
months of life —and these should be considered in future investigations 
(Supplementary Note 6). Furthermore, the data used in these investi-
gations was composed of samples from the genetically predisposed 
and mostly white, non-Hispanic case–control groups designed into 
the TEDDY study. Results cannot be guaranteed to reflect the whole 
TEDDY cohort or child populations in the respective countries.

Future targeted approaches to identify subject-specific connections 
between the gut microbiota and T1D pathogenesis may be beneficial, 
particularly given the apparent population-level heterogeneity revealed 
here. For example, laboratory experiments involving dietary factors that 
have been associated with the onset of T1D3 may reveal biochemically 
specific signals that are mediated by the microbiome. Different endo-
types of disease, such as differences in the first appearing autoantibody 
(IAA versus GADA), the number of appearing autoantibodies, the time 
from seroconversion to T1D diagnosis, genetic host risk alleles and eth-
nic backgrounds, may be characterized by distinct microbial configura-
tions (Supplementary Note 6). Finally, components of the microbiome 
that were poorly measured in these data may also have crucial roles: 
viruses, fungi, microbial transcription or small-molecule biochemistry. 
By surveying these additional molecular activities by cross-sectional 
analysis and in more detailed longitudinal populations, this study lays 
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Fig. 3 | Consistent changes in enzymatic content of the gut microbiome 
in early life. We identified enzyme families (level-4 Enzyme Commission 
(EC) categories) that exhibited the most consistent within-subject 
changes in total community abundance between the ages of 3 months and 
1 year. The top 20 most consistent increases or decreases are presented 
and stratified according to their top 15 contributing species. Heat map 
values reflect the mean contribution of each species to each enzyme over 

samples (n = 733 at 3 months; 675 at 1 year; and 382 at 2 years). Values 
reflect units of copies per million (CPM) normalized to total read depth 
(including unmapped reads and reads mapped to gene families lacking 
EC annotation). Rows (enzymes) and columns (species) are clustered 
according to Spearman correlation at 3 months; subsequent years are 
ordered according to clustering at 3 months.
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the foundation to identify further gut microbial components that are 
predictive, protective or potentially causal in T1D risk or pathogenesis.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0620-2.
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MEthOdS
Cohort and study design. TEDDY is a prospective cohort study funded by the 
National Institutes of Health with the primary goal to identify environmen-
tal causes of T1D. It includes six clinical research centres—three in the United 
States (Colorado, Georgia/Florida, Washington) and three in Europe (Finland, 
Germany and Sweden). Detailed study design and methods have been previously 
published28,41,42. Written informed consents were obtained for all study participants 
from a parent or primary caretaker, separately, for genetic screening and partic-
ipation in a prospective follow-up. The TEDDY study was approved by local US 
Institutional Review Boards and European Ethics Committee Boards in Colorado’s 
Colorado Multiple Institutional Review Board, Georgia’s Medical College of 
Georgia Human Assurance Committee (2004–2010), Georgia Health Sciences 
University Human Assurance Committee (2011–2012), Georgia Regents University 
Institutional Review Board (2013–2015), Augusta University Institutional Review 
Board (2015–present), Florida’s University of Florida Health Center Institutional 
Review Board, Washington state’s Washington State Institutional Review Board 
(2004–2012) and Western Institutional Review Board (2013–present), Finland’s 
Ethics Committee of the Hospital District of Southwest Finland, Germany’s 
Bayerischen Landesärztekammer (Bavarian Medical Association) Ethics 
Committee, Sweden’s Regional Ethics Board in Lund, Section 2 (2004–2012) and 
Lund University Committee for Continuing Ethical Review (2013–present). The 
study is monitored by External Advisory Board formed by the National Institutes 
of Health.

This analysis used stool samples and clinical metadata from two nested case–
control studies (persistent, confirmed IA or T1D) using risk set sampling29. The 
data used here were collected as of 31 May 2012, as a 1:1 match in which one 
control per case of persistent confirmed IA or T1D was selected from the full 
TEDDY cohort. A control was a participant who had not developed persistent, 
confirmed IA or T1D by the time the case to which it was matched had developed 
IA or T1D, within ±45 days of the event time. Matching factors were clinical cen-
tre, sex and family history of T1D to control for differences in geographical area, 
genetic background and in sample or data handling between clinical centres. In all 
case–control comparisons, we removed all case–control pairs in which the control 
later progressed to case status (that is, progressed to IA or T1D). In additional, 17 
subjects with missing information about breastfeeding together with their matched 
pairs were excluded from the case–control comparisons to avoid confounding 
effects from unknown breastfeeding status.

The development of persistent, confirmed IA was assessed every three months. 
Persistent autoimmunity was defined by the presence of confirmed islet autoanti-
body on two or more consecutive visits. The date of persistent autoimmunity was 
defined as the draw date of the first sample of the two consecutive samples that 
deemed the child persistently positive for a specific autoantibody (or any autoan-
tibody). T1D was defined according to American Diabetes Association criteria 
for diagnosis43.

Stool samples were collected monthly starting at three months of age and con-
tinuing up until 48 months of age, then every three months until 10 years of age 
and then biannually thereafter, into the three plastic stool containers provided 
by the clinical centre. Children who were antibody negative after 4 years of age 
were encouraged to submit four times a year even though after 4 years their visits 
schedule switched to biannual. Parents sent the stool containers at either ambient 
or +4 °C temperature with guaranteed delivery within 24 h in the appropriate ship-
ping box to the NIDDK repository if living in the United States or their affiliated 
clinical centre if living in Europe. The European clinical centres stored the stool 
samples and sent monthly bulk shipments of frozen stool to the NIDDK repos-
itory. The TEDDY Manual of Operations, including the stool sample collection 
protocol, can be accessed online at https://repository.niddk.nih.gov/static/studies/
teddy/teddy_moop.pdf.

A priori power calculations using discrete Cox’s proportional hazards regres-
sion44 for the matched IA case–control study estimated 80% power, α = 0.01, two-
sided test to detect an odds ratio > 3 for an exposure with 5% prevalence, to an 
odds ratio > 1.8 for an exposure with 20% prevalence. The experiments were not 
randomized, and investigators were not blinded to allocation during experiments 
and outcome assessment.
Metagenomic sequencing and initial bioinformatics. Samples were metagenom-
ically sequenced as one library each multiplexed through Illumina HiSeq machines 
using the 2 × 100-bp paired-end read protocol. Samples with limited DNA quantity 
and/or too few high-quality reads were filtered out, resulting in a discrepancy of 
sample frequencies between the metagenomic data and the 16S rRNA amplicon 
sequencing data analysed in the companion paper30. Casava v1.8.2 (Illumina) 
output initial FASTQ files from the resulting data were processed using cutadapt 
v1.9dev2 for adaptor removal, Trim Galore v0.2.8 (Babraham Bioinformatics) for 
removing low-quality bases and PRINSEQ v0.20.345 for sample demultiplexing. 
Bowtie2 v2.2.3 was used to map reads to the human genome for decontamination 
before subsequent analysis.

Taxonomic and functional profiling by MetaPhlAn2 and HUMAnN2. 
Taxonomic profiling of the metagenomic samples was performed using 
MetaPhlAn246 v2.6.0, which uses a library of clade-specific markers to provide 
pan-microbial (bacterial, archaeal, viral and eukaryotic) quantification at the spe-
cies level. MetaPhlAn2 was run using default settings.

Functional profiling was performed with HUMAnN247 v0.9.4. For an input 
metagenome, HUMAnN2 constructs a sample-specific reference database by 
concatenating and indexing the pangenomes of species detected in the sample by 
MetaPhlAn2 (pangenomes are pre-clustered, pre-annotated catalogues of open 
reading frames found across isolate genomes from a given species48). HUMAnN2 
then maps sample reads against this database to quantify gene presence and 
abundance in a species-stratified manner, with unmapped reads further used in 
a translated search against UniRef9049 to include taxonomically unclassified but 
functionally distinct gene family abundances. Finally, for community-total, spe-
cies-stratified, and unclassified gene family abundance, HUMAnN2 reconstructs 
metabolic pathway abundance based on the subset of gene families annotated to 
metabolic reactions (based on reaction and pathway definitions from MetaCyc50). 
Enzyme (level-4 Enzyme Commission (EC) categories) abundances were further 
computed by summing the abundances of individual gene families annotated to 
each EC number based on UniRef90-EC annotations from UniProt51.
Phenotype and covariate analysis. This study includes extensive collection of 
clinical covariates that cover several aspects of common and rare life events in 
early childhood from infancy up to five years of age. In these analyses, we used 
information that is, according to the literature, of high relevance in terms of gut 
microbiome development. Information about mothers, pregnancy and birth was 
collected during the three-month clinic visit by questionnaire and included the 
mode of birth (vaginal birth versus caesarean section), gestational age, infant’s 
5-min Apgar score, information about maternal diabetes (T1D, T2D or gesta-
tional diabetes) and maternal insulin and medication use (antibiotics, angiotensin- 
converting enzyme inhibitors, metformin, glyburide, antihypertensives) during 
pregnancy. Dietary information used in these analyses includes the start (and end) 
date for the following dietary compounds: breastfeeding, baby formula, cow’s milk, 
gluten, cereals, meat, vegetables and fruits. The start of solid food (anything other 
than breast milk or cow’s milk) was also analysed separately. The T1D-associated 
autoantibodies IAA, GADA and IA2A were analysed from serum samples collected 
at each clinic visit. In addition to IA, defined as persistent, confirmed autoantibody 
seropositivity, we analysed the data in terms of the persistency and cumulative 
frequency of autoantibodies (single or multiple autoantibodies). In TEDDY, all pre-
scribed antibiotic courses are recorded. We further stratified these data by the type 
of antibiotic in five categories: amoxicillin, penicillin, cephalosporins, macrolide 
and other antibiotics. Information about probiotics covered the dates for starting 
and stopping probiotic supplementation, but not the specific types of probiotics 
used. In addition, sex, information about whether first degree relatives in family 
had T1D, and HLA haplotypes of the subjects were used in these analyses. Subjects 
screened from the general population were identified with high-risk alleles (89%) 
including: DRB1*04-DQA1*03-DQB1*03:02/DRB1*03-DQA1*05-DQB1*02:01 
(DR3/4), DRB1*04-DQA1*03-DQB1*03:02/DRB1*04-DQA1*03-DQB1*03:02 
(DR4/4), DRB1*04-DQA1*03-DQB1*03:02/DRB1*08-DQA1*04-DQB1*04:02 
(DR4/8) and DRB1*03-DQA1*05-DQB1*02:01/DRB1*03-DQA1*05-DQB1*02:01 
(DR3/3), plus six genotypes specific to first-degree relatives28.

Principal coordinate analysis (PCoA) ordination was generated using t-distrib-
uted stochastic neighbour embedding (t-SNE) as implemented in Rtsne package 
in R with Bray–Curtis dissimilarity as the distance measure and perplexity (a free 
parameter) equal to 50. Statistical significance of the trends between early clusters  
and metadata were tested using mixed-effect logistic regression and samples 
collected during the first year of life as follows. The target variable used was a 
binary indicator of whether the relative abundance of the taxon of interest (three 
different Bifidobacterium species or phylum Proteobacteria) was greater than 0.5 
(definition of the cluster). The age of sample collection, mode of delivery, clinical 
centre, breastfeeding status (ongoing/stopped), solid food status (binary variable 
indicating whether solid food was introduced in the diet) and antibiotics status 
(binary variable indicating whether the subject received antibiotics during the last 
30 days) were used as fixed effects, and the subject ID was used as a random effect.

Associations between microbial feature abundances and clinical outcome were 
determined using MaAsLin52. In brief, this multivariate linear modelling system for 
microbial data selects from among a set of (potentially high-dimensional) covari-
ates to associate with microbial taxon or pathway abundances. Mixed-effects linear 
models using a variance-stabilizing arcsin square root transform on relative abun-
dances are then used to determine the significance of putative associations from 
among this reduced set. In the models, subject ID was used as a random effect, 
and the age of sample collection, mode of delivery, clinical centre (for cohort-wide 
comparisons), breastfeeding status (ongoing or stopped), solid food status (binary 
variable indicating whether solid food was introduced in the diet), number of 
sequencing reads and case–control outcome were used as fixed effects. Nominal  

© 2018 Springer Nature Limited. All rights reserved.

https://repository.niddk.nih.gov/static/studies/teddy/teddy_moop.pdf
https://repository.niddk.nih.gov/static/studies/teddy/teddy_moop.pdf


LetterreSeArCH

P values were adjusted using the Benjamini–Hochberg FDR method. Here, 
microbial features with corrected q < 0.25 were reported. For metabolic pathways,  
pseudocount 26 was added to CPM values to stabilize the variation in lowly abundant 
and/or prevalent but highly variable categories, and data were log2-transformed.

As previously described40, to associate microbial diversity with covariates while 
accounting for nonlinear, age-dependent effects, we first fitted a sigmoid function 
(nls function in R) to account for the longitudinal trend. Residuals of this model 
were then used as inputs for a mixed-effect model (glmmPQL function in the 
MASS R package), with subject IDs as random effects to account for repeated 
measurements in the data. Other factors were included in the model as fixed effects, 
and their significance levels were evaluated using P values reported by the model 
(Supplementary Table 2).

The association between T1D case–control outcome and microbial alpha diver-
sity in individual clinical centres was tested using a linear mixed-effects model 
(glmmPQL function in MASS R package) on samples 730 days or less before T1D 
diagnosis. In the model, the age at stool sample collection and T1D case–control 
outcome were used as fixed effects, and subject ID was used as a random effect.
Microbial variance explained by clinical and other covariates. Variance analysis  
was conducted using the adonis function in the vegan R package given a Bray–
Curtis dissimilarity matrix of the taxonomic profiles and all TEDDY clinical 
metadata listed above. In brief, adonis conducts multivariate ANOVA using the 
dissimilarity matrix (that is, partitions the sums of squares) given the metadata as 
covariates. Statistical significance of the fit was assessed using permutation tests.
HMO gene homology. The HMO gene cluster homologues between B. longum 
subsp. infantis and multiple taxa were analysed as follows. UniRef90 gene families 
corresponding to the protein sequences in the B. longum subsp. infantis HMO gene 
cluster39 (protein sequences Blon_2331-Blon_2361 in NCBI protein sequence data-
base) were identified by translated BLAST search against ChocoPhlAn pangenome 
collection48 used by HUMAnN2. Identified hits were further filtered by requiring 
≥50% alignment identity and ≥80% mutual coverage. Combining this informa-
tion with HUMAnN2 species-stratified UniRef90 gene family quantification ena-
bled calling these genes present given that they had sufficient read coverage, here 
defined as log10(counts per million) > 0.1 in at least 50 samples collected during 
breastfeeding. Differential gene prevalence during breastfeeding was tested using 
the samples in which the carrier species had >1% relative abundance. Testing was 
conducted using the test of equal or given proportions (prop.test function in R) 
and by comparing the prevalence (proportion of the samples for which the species 
in question harboured the gene according to the metagenomic data) of the gene in 
samples collected during breastfeeding with the samples collected after weaning.  
P values were adjusted for multiple testing by Benjamini–Hochberg method (p.ad-
just function in R). All homologues together with their BLAST search metrics, 
prevalence in the metagenomic data and corresponding B. infantis HMO gene are 
reported in Supplementary Table 5.
Bacterial growth assays. Bifidobacterium bifidum strain RJX-1201, 
Bifidobacterium breve RJX-1202 and Bifidobacterium longum RJX-1203 were 
streaked on brain heart infusion agar (BD) supplemented with 1% vitamin  
K/hemin solution (BD; sBHI), and incubated for 48 h in a vinyl anaerobic chamber 
(Coy Laboratory Products) containing 5% CO2, 5% H2 and 90% N2 and main-
tained at 37 °C. Cells were transferred to sBHI liquid medium (BHI broth, BD, 

supplemented as above) and grown for 24 h in anaerobic conditions. Cultures 
were washed twice with PBS and optical density at 600 nm (OD600) was measured 
using a BioTek PowerWave 340 plate reader. OD600 was normalized to 0.2 for all 
strains and 5 μl bacteria inoculum was added to a final volume of 200 μl containing 
10% sBHI and 125 mM carbon source (glucose, fucose, galactose or lactose) in 
a 96-well plate. OD600 was measured in the plate reader every hour for 48 h with 
5 s of medium shaking before each measurement. All of the measurements were 
normalized to a medium-only blank. Experiment was repeated three times (n = 3) 
in triplicate and one representative experiment is shown. Error bars are s.d. of 
three technical replicates.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. Code for Random Forest case–control comparisons and cohort 
wide MaAsLin association analyses in Supplementary Table 4 has been made pub-
licly available at https://github.com/tvatanen/broad_teddy_microbiome_analyses. 
Other analysis software including quality control, taxonomic, and functional pro-
filers is publicly available and referenced as appropriate.

Data availability
TEDDY microbiome 16S and whole-genome sequencing data that support 
the findings of this study are available in the NCBI database of Genotypes and 
Phenotypes (dbGaP) with the primary accession code phs001443.v1.p1, in accord-
ance with the dbGaP controlled-access authorization process. Clinical metadata 
analysed during the current study are available in the NIDDK Central Repository 
at https://www.niddkrepository.org/studies/teddy.
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Extended Data Fig. 1 | Heterogeneity in early taxonomic profiles. 
a–d, Relative abundances of taxonomic groups highlighted by weighted 
averages in Fig. 2a (arrows) shown separately (n = 10,913 samples).  
e, f, Average longitudinal abundance of B. breve (e) and B. longum (f)  
per clinical centre (n = 10,194 samples). The curves show LOESS fits  
for the relative abundances, and shaded area shows 95% confidence 
interval for each fit, as implemented in geom_smooth function in  
ggplot2 R package. g–k, Growth curves of human infant isolates of  

B. breve, B. bifidum and B. longum grown individually in low-nutrient 
medium (10% sBHI) supplemented with single carbon sources (glucose 
(g), galactose (h), fucose (i) and lactose (j)) or grown in 100% sBHI (k). 
As a negative control, growth curves of each strain grown in 10% BHI 
without additional sugar are shown in black for each condition. Data are 
representative of three independent experiments and are presented as the 
mean and s.d. of triplicate assessments.
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Extended Data Fig. 2 | Stability and regional differences of taxonomic 
profiles. a, Stability of the microbiota, measured by the Jaccard index 
(n = 10,750 samples) in three-month time windows, over two-month 
increments, stratified into three groups: within subject, within clinical 
centre, and across clinical centres. Lines show the median per time 
window. Shaded areas show the 99% confidence interval estimated 

using binomial distribution. Compare to Fig. 2b, which shows the same 
analysis measured by Bray–Curtis dissimilarity. b–d, Average longitudinal 
abundance of Ruminococcus gnavus (b), Lactobacillus rhamnosus (c) and 
Veillonella parvula (d) per clinical centre (n = 10,194 samples). The curves 
show LOESS fit for the relative abundances, as above.

© 2018 Springer Nature Limited. All rights reserved.



Letter reSeArCH

c

e

0-500-1000-1500

0-500-1000-1500

-2000

Controls
Cases

0

1

2

3

Time to T1D diagnosis (days)

S
ha

nn
on

's
 d

iv
er

si
ty

T1D case-control cohort

1

2

3

Time to T1D diagnosis (days)

S
ha

nn
on

's
 d

iv
er

si
ty

T1D case-control cohort: Georgia

a

0

1

2

3

Age at collection (years)

S
ha

nn
on

's
 d

iv
er

si
ty

0 1 2 3 4 5 6

b

0

1

2

3

0-500-1000-1500-2000
Time to seroconversion (days)

S
ha

nn
on

's
 d

iv
er

si
ty

IA case-control cohort

1

2

3

−900 −600 −300 0
Time to T1D diagnosis (days)

S
ha

nn
on

's
 d

iv
er

si
ty

T1D case-control cohort: Finlandd

Extended Data Fig. 3 | Accrual of microbial alpha diversity. a, Shannon’s 
diversity of the taxonomic profiles of the gut microbial communities 
(n = 10,913 samples) with respect to the age at the sample collection. 
The curve shows the generalized additive model (GAM) fit for the 
data, and the shaded area shows the 95% confidence interval for each 
fit, as implemented in geom_smooth function in ggplot2 R package. 
b, Shannon’s diversity for the samples in the IA case–control cohort 
(n = 7,051) with respect to the time to the appearance of first autoantibody 
(seroconversion). The curves show LOESS fits for cases and controls 

separately, and the shaded area shows 95% confidence intervals for each 
fit. c, Shannon’s diversity for the samples in the T1D case–control cohort 
(n = 3,309) with respect to the time to T1D diagnosis. The curves and 
shaded areas are as in b. d, As in c, but only for data (n = 983 samples) for 
subjects in Finland. No difference between cases and controls. e, As in c, 
but only for data (n = 142 samples, n = 6 subjects) for subjects in Georgia, 
USA. Cases show a drop in alpha diversity before the diagnosis of T1D 
(linear mixed-effects model, P = 0.0033).
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Extended Data Fig. 4 | Effects of antibiotics. a, Influence of antibiotic 
courses on microbial stability, stratified into six-month time windows 
(x axis). Stability was measured by Bray–Curtis dissimilarity over 
consecutive stool samples (<50 days apart) from the same individual 
between 3 and 29 months of age, and stratified by whether antibiotics 
were given between the two samples. For each notched box plot, the box 
denote the interquartile range (IQR), the horizontal line denotes the 
median, and the notch denotes the approximation for the 95% confidence 
interval (notch width = 1.58 × IQR/n0.5, in which n is the number of 
samples per box plot). Compare to Fig. 2c. b, Influence of antibiotic 
courses on microbial diversity. Notched box plots denote the increase 
(difference) in diversity between two consecutive stool samples (<50 
days apart) stratified by antibiotic administration between the samples. 
Data show no difference between the groups (antibiotics versus no 
antibiotics). c, Influence of antibiotics courses on microbial diversity by 
antibiotic type; data from b stratified into one-year time windows (x axis) 
and antibiotic types. No significant differences were detected between 
the antibiotic types. d, e, Influence of antibiotic courses on microbial 

stability by antibiotic type; data from Fig. 2c and Extended Data Fig. 3a 
stratified by antibiotic type. d, LOESS fit for the relative abundances 
(shaded area shows 95% confidence interval for each fit, as implemented 
in geom_smooth function in ggplot2 R package). e, Notched box plots 
(as in a and b) for the data per antibiotic type. No significant differences 
were detected between the antibiotic types. No antibiotics, n = 7,130; 
amoxicillin, n = 268; penicillin, n = 90; cephalosporin, n = 51; macrolide, 
n = 60; other, n = 101. f, Decreases in relative abundance of bacteria over 
antibiotic courses. Bacteria for which the bootstrapped 95% confidence 
interval of the fold change does not overlap zero are shown. Fold change 
was measured between consecutive samples with an antibiotic course 
between them, given that the species in question was present in the first of 
the two samples. Sample size per species (n) indicate the number of sample 
pairs in which the species in question was present in the sample preceding 
the antibiotic treatment. Bars denote bootstrapped mean log2(fold 
change) (that is, decrease), and error bars denote s.d. (n = 1,000 bootstrap 
samples).

© 2018 Springer Nature Limited. All rights reserved.



Letter reSeArCH

annotated

unannotated

unmapped
0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
am

ou
nt

c

Samples

Gene Ontology annotations

Samples

annotated

unannotated

unmapped
0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
am

ou
nt

d MetaCyc annotations

1 2 3 4
Age (years)

0.05

0.10

0.15

0.20

P
ro

po
rti

on
 o

f u
nm

ap
pe

d 
re

ad
s

e

1 2 3 4
Age (years)

0.04

0.06

0.08

P
ro

po
rti

on
 o

f r
ea

ds
 w

ith
co

nf
id

en
t f

un
ct

io
na

l a
nn

ot
at

io
n

f

Within subject
Within clinical center
Between clinical centers

0.80

0.85

0.90

Age (years)

M
ed

ia
n 

Ja
cc

ar
d 

In
de

x

321

ba

0.65

0.70

0.75

0.80

0.85

M
ed

ia
n 

fu
nc

tio
na

l s
im

ila
rit

y
(1

-B
C

 d
is

si
m

ila
rit

y)

Age (years)
321

Extended Data Fig. 5 | Dynamics of species-specific microbial 
functional potential during early gut development. a, b, Stability of 
microbial pathways (n = 10,580 samples) measured by Bray–Curtis 
dissimilarity (a) and the Jaccard index (b) and stratified into three 
groups: within subject, within clinical centre, and across clinical centres. 
Although the baseline level of functional similarity is significantly 
greater than that of taxa (see Fig. 2b), functional states and development 
trajectories also both retain a level of personalization. The stability of 
the functional profiles was evaluated in three-month time windows, 
over two-month increments. Lines show the median per time window, 
and shaded area denotes the 99% confidence interval estimated using 
binomial distribution. c, d, Proportion of metagenomic gene abundance 
with functional annotation through Gene Ontology (c) and MetaCyc 
(d) databases. The metagenomic reads were divided into the following 

categories: reads that could be mapped to genes with functional 
assignment in the database in question (annotated), and reads with no 
annotation but alignment to species pangenomes or UniProt proteins 
(unannotated). The proportion of the unknown genes (unmapped) 
was estimated using the number of reads with unknown origin. e, The 
proportion of unmapped reads, reflecting the relative abundances of reads 
not mappable to any microbial pangenomes in the available reference set 
or to UniProt. An increasing trend of unmapped reads with respect to 
the age at sample collection continued through approximately two years 
of age. f, The proportion of reads with confident functional annotation 
in MetaCyc within the genes that mapped to species pangenomes or 
UniProt proteins. The data again showed an increasing longitudinal trend, 
implicating a deficit of functional and biochemical annotations within 
microorganisms that are abundant during the first year of life.
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Extended Data Fig. 6 | Differences between cases and controls. a, The 
gut microbiome functional (left) and taxonomic (right) profiles were 
classified between cases and controls using leave-one-out cross-validation 
(n = 3,366 samples), in which one case–control pair was held-out in 
turn. Data show error rates for classifying these held-out samples per 
fold (a data point per fold, n = 100 folds). This suggests weak but better-
than-random classification between cases and controls. Notched box 
plots are as in Extended Data Fig. 4. b, Average longitudinal abundance 
of Ruminococcus gnavus in Finland (n = 2,630 samples) stratified by the 
number of observed persistent autoantibodies (AABs); no autoantibodies 
(that is, healthy control), a single autoantibody, or multiple (two or 
more) autoantibodies. c, Average longitudinal abundance of Lactobacillus 
rhamnosus in IA cases and controls (n = 7,017 samples). L. rhamnosus 
is more abundant in controls (q = 0.055). The curves in b and c show 
LOESS fit per group, and shaded areas show 95% confidence interval for 

each fit, as implemented in geom_smooth function in ggplot2 R package. 
d, Abundance (left) and prevalence (right) of Lactobacillus reuteri and 
L. rhamnosus in the first stool sample of each individual (collected at 
approximately three months of age) in association with early probiotic 
supplementation. ‘No probiotic’ indicates no probiotics given before the 
first stool sample (n = 583); ‘later probiotic’ refers to probiotics given 
later than the first four weeks but before the first stool sample (n = 45); 
‘early probiotic’ refers to probiotics given during the first four weeks of 
life (n = 84). Numbers (n) per clinical centre are given in Extended Data 
Table 2. L. reuteri and L. rhamnosus were more abundant and prevalent 
in groups with probiotics supplementation. Visual jitter was added to 
make data equal to zero distinguishable, and boxes denote the IQR, when 
applicable. The shown P values were obtained by applying Fisher’s exact 
test (two-sided) to presence or absence count data (counting samples in 
which the species were present).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 7 | Contrasting HMO utilization genes in  
B. pseudocatenulatum. The gene families involved in HMO utilization 
and that show contrasting presence in B. pseudocatenulatum genomes 
during breastfeeding (n = 321 samples) compared to after weaning 
(n = 1,004 samples). Columns represent stool samples in which the 

relative abundance of B. pseudocatenulatum species was greater than 10% 
(n = 1,325 samples). Rows and columns were ordered by hierarchical 
clustering using complete linkage method. Compare to Fig. 4, which 
shows similar data for B. longum. UniRef90 identifiers and gene names or 
families are indicated on the left.
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Extended data table 1 | Summary of tEddY microbiome cohort

T1D cases (samples)
IA cases (samples)
Healthy controls (samples)

Sex
Male / Female

Ethnic background
White, non-hispanic

Mode of birth
Caesarean section

Probiotic supplementation
Probiotics during first 4 weeks
Probiotics during follow-up

Breastfeeding
Median duration (days)
duration, 25 percentile
duration, 75 percentile
Number of subjects never breastfed

Maternal characteristics
Maternal T1D
Maternal T2D
Gestational diabetes
Antibiotics during pregnancy
Metformin during pregnancy
Glyburide during pregnancy
Antihypertensives during pregnancy
Insulin during pregnancy

0

3

US, Colorado
14 (274)
39 (689)
61 (906)

61 / 53

86 (75.4%)

41 (36.0%)

22 (19.3%)

268
56
396

7 (6.1%)
2 (1.8%) 
5 (4.4%)
21 (18.4%)
1 (0.9%) 
2 (1.8%)
4 (3.5%)
9 (7.9%)

US, Georgia
3 (89)
17 (252)
22 (250)

19 / 23

41 (97.6%)

22 (52.4%)

2 (4.8%)
13 (31.0%)

301
145
365
3

0
0
5 (11.9%)
10 (23.8%)
0
2 (4.8%)
3 (7.1%)
0

US, Washington
8 (111)
25 (368)
36 (399)

51 / 18

56 (81.2%)

25 (36.2%)

0
9 (13.0%)

335
171
440
1

3 (4.3%)
0
5 (7.2%)
5 (7.2%)
0
2 (2.9%)
4 (5.8%)
3 (4.3%)

Finland
34 (553)
70 (900)
119 (1,273)

117 / 106

N/A

42 (18.8%)

67 (30.0%)
162 (72.6%)

289
152
385
0

14 (6.3%)
0
32 (14.3%)
40 (17.9%)
1 (0.4%)
0
5 (2.2%)
23 (10.3%)

Germany
13 (246)
21 (292)
40 (512)

30 / 44

N/A

23 (31.1%)

7 (9.5%)
33 (44.6%)

278
140
367
0

18 (24.3%)
0
3 (4.1%)
13 (17.6%)
0
0
3 (4.1%)
19 (25.7%)

Sweden
29 (532)
95 (1,542) 
137 (1,725)

152 / 109

N/A

46 (17.6%)

14 (5.4%) 
58 (22.2%)

228
98
304
0

7 (2.7%)
0
6 (2.3%)
29 (11.1%)
0
0
0
8 (3.1%)

Data on subjects’ ethnic background were not systematically collected in European clinical centres but these study populations were predominantly white, non-Hispanic. Reported antihypertensive 
drugs were atenolol (n = 2), bisoprolol (n = 1), labetalol (n = 6), methyldopa (n = 1), methyldopa plus methyldopate (n = 3), metoprolol (n = 4) and nifedipine (n = 5). No use of angiotensin-converting 
enzyme (ACE) inhibitors was reported. Numbers indicate the number of subjects (n) if not specified otherwise.

© 2018 Springer Nature Limited. All rights reserved.
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Extended data table 2 | Antibiotics and probiotics

Subjects with abx prescriptions
Median number of abx per subject (25th and 75th percentile)

Number of abx by type (prescriptions per subject)
Amoxicillin
Cephalosporins
Macrolide
Penicillin
Other
Total

Probiotic use in early life
Early probiotic
Later probiotic
No probiotic

US, Colorado
93 (81.6%)
2 (1-6)

242 (2.12)
87 (0.76)
54 (0.47)
6 (0.05)
76 (0.67)
465 (4.08)

0 (0.0%)
1 (0.9%)
109 (99.1%)

US, Georgia 
37 (88.1%)
5 (2-9)

147 (3.50)
65 (1.55)
35 (0.83)
2 (0.05)
80 (1.90)
329 (7.83)

1 (2.9%)
1 (2.9%)
32 (94.1%)

0 (0.0%)

US, Washington
54 (78.3%)
2 (1-4)

104 (1.51)
31 (0.45)
47 (0.68)
3 (0.04)
33 (0.48)
218 (3.16)

2 (3.3%)
59 (96.7%)

Finland
206 (92.4%)
6 (3-11)

769 (3.45)
127 (0.57)
203 (0.91)
17 (0.08)
521 (2.34)
1,637 (7.34)

63 (30.7%)
16 (7.8%)
126 (61.5%)

Germany
56 (75.7%)
2 (0-5)

45 (0.61)
51 (0.69)
33 (0.45)
13 (0.18)
77 (1.04)
219 (2.96)

7 (10.0%)
8 (11.4%)
55 (78.6%)

Sweden
192 (73.6%)
2 (0-4)

134 (0.51)
23 (0.09)
23 (0.09)
412 (1.58)
154 (0.59)
746 (2.86)

13 (5.6%)
17 (7.3%)
202 (87.1%)

Top, 3,678 antibiotic prescriptions in the TEDDY microbiome study population by clinical centre. Bottom, early probiotic supplementation in TEDDY clinical centres. Probiotic use was stratified into 
three categories: probiotics during the first 4 weeks of life (early probiotic); probiotics before the first stool sample (roughly at three months) but not the first 4 weeks (later probiotic); and no probiotics 
before the first stool sample (no probiotic). Data for probiotics are presented as n (percentage).

© 2018 Springer Nature Limited. All rights reserved.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.
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Data collection No software was used for data collection.

Data analysis Bowtie2 v2.2.3, Casava v1.8.2 (Illumina), cutadapt v1.9dev2, Trim Galore v0.2.8 (Babraham Bioinformatics), PRINSEQ v0.20.3, 
MetaPhlAn2 v2.6.0, HUMAnN2 v0.9.4, R v3.1.1, Python v2.7.1. Additional details are given in Methods.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

TEDDY Microbiome 16S and WGS data that support the findings of this study are available in NCBI’s database of Genotypes and Phenotypes (dbGaP) with the 
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primary accession code phs001443.v1, in accordance with the dbGaP controlled-access authorization process. Clinical metadata analyzed during the current study 
are available in the NIDDK Central Repository at https://www.niddkrepository.org/studies/teddy.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All stool samples with metagenomic data (N = 10,903 stool samples) from subjects in TEDDY islet autoimmunity and type 1 diabetes case-
control cohorts are being analyzed for maximal power. This includes all subjects with islet autoimmunity or type 1 diabetes and their matched 
controls in TEDDY study as of May 31, 2012 (N =783 subjects).

Data exclusions In T1D and IA case-control comparisons, all case-control pairs where the control later progressed to case status were removed (i.e. they 
progressed to IA or T1D).

Replication For bacterial growth assays, the experiment was reproduced 3x with technical replicates in triplicate.

Randomization Randomization was not used.

Blinding No blinding was used, TEDDY is an observational follow-up study.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials
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Eukaryotic cell lines

Palaeontology
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials The bacterial strains isolated for and used in this study will be provided to anyone who requests them.

Human research participants
Policy information about studies involving human research participants

Population characteristics This study includes metagenomic profiles of stool samples from children collected monthly starting at three months of age to up 
to five years of age. The study population are 783 mostly white, non-hispanic children from six different clinical centers in the 
U.S. (Colorado, Georgia/Florida, and Washington) and Europe (Finland, Germany, and Sweden). The whole study population had 
a genetic predisposition for T1D or first-degree relative(s) with T1D.

Recruitment Families with a newborn in participating clinical centers with HLA-conferred genetic predisposition for T1D or first-degree 
relative(s) with T1D were invited to join the study. 
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