Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All data generated or analysed during this study are included in this published Article. Other Expedition 364 data are available online (https://doi.org/10.14379/iodp.proc.364.2017).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 13 November 2018

    In this Article, the middle initial of author Kosei E. Yamaguchi (of the IODP–ICDP Expedition 364 Science Party) was missing and his affiliation is to Toho University (not Tohu University). These errors have been corrected online.


  1. 1.

    Croft, S. K. The modification stage of basin formation: conditions of ring formation. Geochim. Cosmochim. Acta 12A, 227–257 (1981).

  2. 2.

    Grieve, R. A. F., Robertson, P. B. & Dence, M. R. Constraints on the formation of ring impact structures, based on terrestrial data. Geochim. Cosmochim. Acta 12A, 37–57 (1981).

  3. 3.

    Neumann, G. A. et al. Lunar impact basins revealed by gravity recovery and interior laboratory measurements. Sci. Adv. 1, e1500852 (2015).

  4. 4.

    Ivanov, B. A. Numerical modelling of the largest terrestrial meteorite craters. Sol. Syst. Res. 39, 381–409 (2005).

  5. 5.

    Melosh, H. J. & Ivanov, B. A. Impact crater collapse. Annu. Rev. Earth Planet. Sci. 27, 385–415 (1999).

  6. 6.

    O’Keefe, J. D. & Ahrens, T. J. Planetary cratering mechanics. J. Geophys. Res. 98, 17011–17028 (1993).

  7. 7.

    Wünnemann, K. & Ivanov, B. A. Numerical modelling of the impact crater depth-diameter dependence in an acoustically fluidized target. Planet. Space Sci. 51, 831–845 (2003).

  8. 8.

    Grady, D. E. & Kipp, M. E. in Fracture Mechanics of Rock (ed. Atkinson, B. K.) 429–475 (Academic Press, London, 1987).

  9. 9.

    Fujiwara, A., Kamimoto, G. & Tsukamoto, A. Destruction of basaltic bodies by high-velocity impact. Icarus 31, 277–288 (1977).

  10. 10.

    Ahrens, T. J. & Rubin, A. M. Impact-induced tensional failure in rock. J. Geophys. Res. 98, 1185–1203 (1993).

  11. 11.

    Buhl, E. et al. Particle size distribution and strain rate attenuation in hypervelocity impact and shock recovery experiments. J. Struct. Geol. 56, 20–33 (2013).

  12. 12.

    Collins, G. S. Numerical simulations of impact crater formation with dilatancy. J. Geophys. Res. 119, 2600–2619 (2014).

  13. 13.

    Melosh, H. J., Ryan, E. V. & Asphaug, E. Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J. Geophys. Res. 97, 14,735–14,759 (1992).

  14. 14.

    Kenkmann, T. Folding within seconds. Geology 30, 231–234 (2002).

  15. 15.

    Kenkmann, T. Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth Planet. Sci. Lett. 214, 43–58 (2003).

  16. 16.

    Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).

  17. 17.

    Senft, L. E. & Stewart, S. T. Dynamic fault weakening and the formation of large impact craters. Earth Planet. Sci. Lett. 287, 471–482 (2009).

  18. 18.

    Spray, J. G. Superfaults. Geology 25, 579–582 (1997).

  19. 19.

    Melosh, H. J. Acoustic fluidization: a new geological process? J. Geophys. Res. 84, 7513–7520 (1979).

  20. 20.

    Melosh, H. J. Dynamical weakening of faults by acoustic fluidization. Nature 379, 601–606 (1996).

  21. 21.

    Grieve, R. A. F. & Therriault, A. Vredefort, Sudbury, Chicxulub: three of a kind? Annu. Rev. Earth Planet. Sci. 28, 305–338 (2000).

  22. 22.

    Grieve, R. A. F., Reimold, W. U., Morgan, J., Riller, U. & Pilkington, M. Observations and interpretations at Vredefort, Sudbury and Chicxulub: towards a composite kinematic model of terrestrial impact basin formation. Meteorit. Planet. Sci. 43, 855–882 (2008).

  23. 23.

    Collins, G. S., Melosh, H. J., Morgan, J. V. & Warner, M. R. Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus 157, 24–33 (2002).

  24. 24.

    Morgan, J. V. et al. The formation of peak rings in large impact craters. Science 354, 878–882 (2016).

  25. 25.

    Morgan, J. V., Warner, M. R., Collins, G. S., Melosh, H. J. & Christeson, G. L. Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth Planet. Sci. Lett. 183, 347–354 (2000).

  26. 26.

    Morgan, J. V. et al. Full waveform tomographic images of the peak ring at the Chicxulub impact crater. J. Geophys. Res. 116, B06303 (2011).

  27. 27.

    Gulick, S. P. S. et al. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nat. Geosci. 1, 131–135 (2008).

  28. 28.

    Morgan, J. V. et al. Chicxulub: drilling the K-Pg impact crater. In Proceedings of the International Ocean Discovery Program 364 https://doi.org/10.14379/iodp.proc.364.2017 (International Ocean Discovery Program, College Station, 2017).

  29. 29.

    Christeson, G. L. et al. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth Planet. Sci. Lett. 495, 1–11 (2018).

  30. 30.

    Petit, J. P. Criteria for the sense of movement on fault surfaces in brittle rocks. J. Struct. Geol. 9, 597–608 (1987).

  31. 31.

    Berthé, D., Choukroune, P. & Jegouzo, P. Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. J. Struct. Geol. 1, 31–42 (1979).

  32. 32.

    Ivanov, B. A. & Artemieva, N. A. in Catastrophic Events and Mass Extinctions: Impact and Beyond (eds C. Koeberl, C. & MacLeod, K. G.) Geological Society of America Special Paper 356, 619–630 (GSA, 2002).

  33. 33.

    Johnson, B. C., Campbell, C. S. & Melosh, H. J. The reduction of friction in long runout landslides as an emergent phenomenon. J. Geophys. Res. 121, 881–889 (2016).

  34. 34.

    Kring, D. A., Kramer, G. Y., Collins, G. S., Potter, R. W. K. & Chandnani, M. Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin. Nat. Commun. 7, 13161 (2016).

  35. 35.

    Ivanov, B. A., Kocharyan, G. G. & Kostuchenko, V. N. Puchezh-Katunki impact crater: preliminary data on recovered core block structure. In Proc. 27th Lunar and Planetary Science Conf. 589–590, https://www.lpi.usra.edu/meetings/lpsc1996/pdf/1295.pdf (1996).

  36. 36.

    Kenkmann, T., Collins, G. S. & Wünnemann, K. in Impact Cratering: Processes and Products (eds Osinski, G. R. & Pierazzo, E.) 60–75 (John Wiley & Sons, Chichester, 2013).

  37. 37.

    Rae, A. S. P., Collins, G. S., Grieve, R. A. F., Osinski, G. R. & Morgan, J. V. Complex crater formation: insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure. Meteorit. Planet. Sci. 52, 1330–1350 (2017).

  38. 38.

    Gulick, S. et al. in Proceedings of the International Ocean Discovery Program Volume 364 (eds Morgan, J. et al.) 1–46 (IODP, 2017).

  39. 39.

    Ortner, H., Reiter, F. & Acs, P. Easy handling of tectonic data: the programs Tectonics FP for Mac and Tectonics FP for Windows. Comput. Geosci. 28, 1193–1200 (2002).

  40. 40.

    Collins, G. S. et al. Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth Planet. Sci. Lett. 270, 221–230 (2008).

Download references


This work was supported by the Priority Programs 527 and 1006 of the German Science Foundation (grants Ri 916/16-1 and PO 1815/2-1), National Science Foundation grants (OCE-1737351, OCE-1450528 and OCE-1736826), and Natural Environment Research Council (grants NE/P011195/1 and NE/P005217/1). The Chicxulub drilling expedition was funded by the European Consortium for Ocean Research Drilling (ECORD) and the IODP as Expedition 364 with co-funding from the ICDP. The Yucatan State Government and Universidad Nacional Autónoma de México (UNAM) provided logistical support. This research used samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm. We are grateful for assistance from the staff of the IODP Core Repository in Bremen, Germany, during the Onshore Science Party. We thank B. Ivanov and C. Koeberl for constructive reviews and S. Teuber for assistance in figure preparation. This is UTIG contribution number 3,278.

Reviewer information

Nature thanks B. Ivanov and C. Koeberl for their contribution to the peer review of this work.

Author information

Author notes

  1. A list of participants and their affiliations appears at the end of the paper.


  1. Institut für Geologie, Universität Hamburg, Hamburg, Germany

    • Ulrich Riller
    • , Felix M. Schulte
    •  & Ulrich Riller
  2. Department of Geology, Universität Freiburg, Freiburg, Germany

    • Michael H. Poelchau
  3. Department of Earth Science and Engineering, Imperial College London, London, UK

    • Auriol S. P. Rae
    • , Gareth S. Collins
    • , Joanna V. Morgan
    •  & Joanna V. Morgan
  4. Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA

    • H. Jay Melosh
  5. Centre for Planetary Science and Exploration, Western University, London, Ontario, Canada

    • Richard A. F. Grieve
  6. Institute for Geophysics, University of Texas, Austin, TX, USA

    • Sean P. S. Gulick
    • , Naoma McCall
    • , Sean P. S. Gulick
    • , Gail L. Christeson
    • , Christopher M. Lowery
    •  & Cornelia Rasmussen
  7. Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA

    • Sean P. S. Gulick
    • , Naoma McCall
    • , Sean P. S. Gulick
    • , Christopher M. Lowery
    •  & Cornelia Rasmussen
  8. Géosciences Montpellier, CNRS, Université de Montpellier, Montpellier, France

    • Johanna Lofi
    • , Abdoulaye Diaw
    •  & Johanna Lofi
  9. Universities Space Research Association, Lunar and Planetary Institute, Houston, TX, USA

    • David A. Kring
    •  & David A. Kring
  10. British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh, UK

    • Sophie L. Green
  11. Université de Bourgogne-CNRS, Biogeosciences Laboratory, Dijon, France

    • Elise Chenot
  12. Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium

    • Philippe Claeys
  13. School of Physics and Astronomy, UK Center for Astrobiology, University of Edinburgh, Edinburgh, UK

    • Charles S. Cockell
  14. Western Australia Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia

    • Marco J. L. Coolen
  15. Natural History Museum, Vienna, Austria

    • Ludovic Ferrière
  16. Alfred Wegener Institute Helmholtz Centre of Polar and Marine Research, Bremerhaven, Germany

    • Catalina Gebhardt
  17. International Research Institute of Disaster Science, Tohoku University, Sendai, Japan

    • Kazuhisa Goto
  18. Pennsylvania State University, University Park, PA, USA

    • Heather Jones
    •  & Timothy J. Bralower
  19. China University of Geosciences (Wuhan), School of Earth Sciences, Planetary Science Institute, Wuhan, China

    • Long Xiao
  20. National Center of Scientific Research (CNRS), Groupe de Physico-Chimie de l’Atmosphère, Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé ICPEES, Université de Strasbourg, Strasbourg, France

    • Rubén Ocampo-Torres
  21. Instituto de Geofísica, Universidad Nacional Autónoma De México, México City, Mexico

    • Ligia Perez-Cruz
    •  & Jaime Urrutia Fucugauchi
  22. School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK

    • Annemarie E. Pickersgill
  23. Argon Isotope Facility, Scottish Universities Environmental Research Centre (SUERC), East Kilbride, UK

    • Annemarie E. Pickersgill
  24. Department of Geology, University of Freiburg, Freiburg, Germany

    • Michael H. Poelchau
  25. Department of Earth Science and Engineering, Imperial College London, London, UK

    • Auriol S. P. Rae
  26. Unidad de Ciencias del Agua, Mérida, Mexico

    • Mario Rebolledo-Vieyra
  27. Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

    • Honami Sato
  28. Faculty of Earth and Life Sciences, Amsterdam, The Netherlands

    • Jan Smit
  29. Earth and Planetary Sciences, Rutgers University—New Brunswick, Piscataway, NJ, USA

    • Sonia M. Tikoo-Schantz
  30. Japan Agency for Marine-Earth Science and Technology, Kochi Institute for Core Sample Research, Kochi, Japan

    • Naotaka Tomioka
  31. Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, USA

    • Michael T. Whalen
  32. Eyring Materials Center, Arizona State University, Tempe, AZ, USA

    • Axel Wittmann
  33. Department of Chemistry, Toho University, Funabashi, Japan

    • Kosei E. Yamaguchi
  34. NASA Astrobiology Institute, Mountain View, CA, USA

    • Kosei E. Yamaguchi


  1. Search for Ulrich Riller in:

  2. Search for Michael H. Poelchau in:

  3. Search for Auriol S. P. Rae in:

  4. Search for Felix M. Schulte in:

  5. Search for Gareth S. Collins in:

  6. Search for H. Jay Melosh in:

  7. Search for Richard A. F. Grieve in:

  8. Search for Joanna V. Morgan in:

  9. Search for Sean P. S. Gulick in:

  10. Search for Johanna Lofi in:

  11. Search for Abdoulaye Diaw in:

  12. Search for Naoma McCall in:

  13. Search for David A. Kring in:


  1. IODP–ICDP Expedition 364 Science Party


U.R., M.H.P., A.S.P.R., J.V.M., S.P.S.G. and R.A.F.G. conceived the study. All authors participated in sampling and data collection offshore and/or onshore during IODP-ICDP Expedition 364, interpretation of the data as well as writing and/or editing of the manuscript. U.R. provided the first draft of the manuscript. U.R. and F.M.S. acquired structural data from line scans. J.L. and A.D. provided the downhole orientation data. A.S.P.R and G.S.C. performed and analysed the numerical models; G.S.C., A.S.P.R. and H.J.M. contributed the discussion on the implications for acoustic fluidization.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Ulrich Riller.

Extended data figures and tables

  1. Extended Data Fig. 1 Lower-hemisphere, equal-area diagrams showing poles to pre-impact aplite, diabase and pegmatite sheet intrusions.

    N, north. n, number of dykes. Source data

  2. Extended Data Fig. 2 Diagram showing pressure versus time as recorded by 100 Lagrangian tracer particles in the peak-ring rocks.

    (See Supplementary Video for location of tracer particles). Grey circles show the pressure of each tracer particle at time intervals of 2 s. The black solid line shows average pressure (all tracer particles). We note the elevated pressures between T = 100 s and T = 250 s during central uplift formation and collapse.

Supplementary information

  1. Video 1

    Animation of the numerical simulation results. The target (and impactor) materials are indicated by colour, consistent with the individual frames shown in Fig. 2 (carbonate rock, grey; crust, pink; mantle, green). Large-scale deformation of the entire target is illustrated by a grid of Lagrangian tracer particles (black dots) with 2-km initial spacing. In addition, 100 tracer particles within the peak-ring rocks are highlighted in blue. The inset shows the same tracer particles in a Lagrangian reference frame centered on the average coordinates of the highlighted tracer particles.

Source data

About this article

Publication history







By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.