Abstract

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions1,2.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Source Data for Figs. 3b, c and 4 are available with the online version of the paper.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Aguilera, D. N. et al. STE-QUEST—test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 31, 115010 (2014).

  2. 2.

    Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).

  3. 3.

    Colella, R., Overhauser, A. W. & Werner, S. A. Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975).

  4. 4.

    Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Princeton Univ. Press, Princeton, 1973).

  5. 5.

    Berman, P. R. Atom Interferometry Ch. 9 (Academic Press, New York, 1997).

  6. 6.

    Dimopoulos, S., Graham, P. W., Hogan, J. M. & Kasevich, M. A. Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 111102 (2007).

  7. 7.

    Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

  8. 8.

    Ketterle, W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

  9. 9.

    Chu, S., Bjorkholm, J. E., Ashkin, A., Gordon, J. P. & Hollberg, L. W. Proposal for optically cooling atoms to temperatures of the order of 10−6 K. Opt. Lett. 11, 73–75 (1986).

  10. 10.

    Müntinga, H. et al. Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013).

  11. 11.

    Kovachy, T. et al. Matter wave lensing to picokelvin temperatures. Phys. Rev. Lett. 114, 143004 (2015).

  12. 12.

    Grosse, J. et al. Design and qualification of an UHV system for operation on sounding rockets. J. Vac. Sci. Technol. A 34, 031606 (2016).

  13. 13.

    Schkolnik, V. et al. A compact and robust diode laser system for atom interferometry on a sounding rocket. Appl. Phys. B 122, 217 (2016).

  14. 14.

    Kubelka-Lange, A. et al. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket. Rev. Sci. Instrum. 87, 063101 (2016).

  15. 15.

    Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose-Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

  16. 16.

    Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

  17. 17.

    Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

  18. 18.

    van Zoest, T. et al. Bose-Einstein condensation in microgravity. Science 328, 1540–1543 (2010).

  19. 19.

    Rudolph, J. et al. A high-flux BEC source for mobile atom interferometers. New J. Phys. 17, 065001 (2015).

  20. 20.

    Barrett, B. et al. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016).

  21. 21.

    Liu, L. et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun. 9, 2760 (2018).

  22. 22.

    Gibney, E. Universe’s coolest lab set to open up quantum world. Nature 557, 151–152 (2018).

  23. 23.

    Corgier, R. et al. Fast manipulation of Bose-Einstein condensates with an atom chip. New J. Phys. 20, 055002 (2018).

  24. 24.

    Pethick, C. & Smith, H. Bose-Einstein Condensation in Dilute Gases Ch. 6 (Cambridge Univ. Press, Cambridge, 2002).

  25. 25.

    Stringari, S. Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996).

  26. 26.

    Douch, K., Wu, H., Schubert, C., Müller, J. & dos Santos, F. P. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv. Space Res. 61, 1307–1323 (2018).

  27. 27.

    Altschul, B. et al. Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501–524 (2015).

  28. 28.

    Hogan, J. M. et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953–2009 (2011).

  29. 29.

    Armengol, J. M. P. et al. Quantum communications at ESA: towards a space experiment on the ISS. Acta Astronaut. 63, 165–178 (2008).

  30. 30.

    Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

  31. 31.

    Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

  32. 32.

    Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

  33. 33.

    Yin, J. et al. Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017).

  34. 34.

    Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32, 3143–3145 (2007).

Download references

Acknowledgements

This work is supported by the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant numbers DLR 50WM1131-1137, 50WM0940 and 50WM1240. W.P.S. thanks Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University and Texas A&M AgriLife for support for this work. The research of the IQST is financed partially by the Ministry of Science, Research and Arts Baden-Württemberg. N.G. acknowledges funding from Niedersächsisches Vorab through the Quantum- and Nano-Metrology (QUANOMET) initiative within the project QT3. W.H. acknowledges funding from Niedersächsisches Vorab through the project Foundations of Physics and Metrology project. R.C. is a recipient of DAAD (Procope action and mobility scholarship) and a member of the IP@Leibniz programme, which is supported by LU Hanover. S.T.S. is grateful for non-monetary support from DLR MORABA before, during and after the MAIUS-1 launch. We thank E. Kajari and M. Eckardt for the chip model code and A. Roura and W. Zeller for their input. We thank C. Spindeldreier and H. Blume from IMS Hanover for FPGA software development. We acknowledge the contributions of PTB Brunswick and LNQE Hanover towards fabricating the atom chip. We thank ESRANGE Kiruna and DLR MORABA Oberpfaffenhofen for assistance during the test and launch campaign.

Reviewer information

Nature thanks L. Liu and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Author notes

    • Stephan T. Seidel

    Present address: OHB System AG, Weßling, Germany

  1. These authors contributed equally: Dennis Becker, Maike D. Lachmann, Stephan T. Seidel

Affiliations

  1. Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany

    • Dennis Becker
    • , Maike D. Lachmann
    • , Stephan T. Seidel
    • , Holger Ahlers
    • , Thijs Wendrich
    • , Robin Corgier
    • , Naceur Gaaloul
    • , Waldemar Herr
    • , Manuel Popp
    • , Wolfgang Ertmer
    •  & Ernst M. Rasel
  2. Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany

    • Aline N. Dinkelaker
    • , Vladimir Schkolnik
    • , Markus Krutzik
    •  & Achim Peters
  3. Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, Germany

    • Jens Grosse
    • , Hauke Müntinga
    • , André Kubelka-Lange
    • , Claus Braxmaier
    •  & Claus Lämmerzahl
  4. Institute of Space Systems, German Aerospace Center (DLR), Bremen, Germany

    • Jens Grosse
    •  & Claus Braxmaier
  5. Institute of Laser-Physics, University Hamburg, Hamburg, Germany

    • Ortwin Hellmig
    • , Hannes Duncker
    •  & Klaus Sengstock
  6. Institute of Physics, Johannes Gutenberg University Mainz (JGU), Mainz, Germany

    • André Wenzlawski
    •  & Patrick Windpassinger
  7. Simulation and Software Technology, German Aerospace Center (DLR), Brunswick, Germany

    • Benjamin Weps
    • , Tobias Franz
    •  & Daniel Lüdtke
  8. Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France

    • Robin Corgier
    • , Sirine Amri
    •  & Eric Charron
  9. Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany

    • Maik Erbe
    • , Anja Kohfeldt
    •  & Andreas Wicht
  10. Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm, Germany

    • Wolfgang P. Schleich
  11. Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA

    • Wolfgang P. Schleich
  12. Texas A&M AgriLife Research, Texas A&M University, College Station, TX, USA

    • Wolfgang P. Schleich
  13. Institute for Quantum Science and Engineering (IQSE), Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA

    • Wolfgang P. Schleich
  14. Institut für Angewandte Physik, Technische Universität Darmstadt, Darmstadt, Germany

    • Reinhold Walser

Authors

  1. Search for Dennis Becker in:

  2. Search for Maike D. Lachmann in:

  3. Search for Stephan T. Seidel in:

  4. Search for Holger Ahlers in:

  5. Search for Aline N. Dinkelaker in:

  6. Search for Jens Grosse in:

  7. Search for Ortwin Hellmig in:

  8. Search for Hauke Müntinga in:

  9. Search for Vladimir Schkolnik in:

  10. Search for Thijs Wendrich in:

  11. Search for André Wenzlawski in:

  12. Search for Benjamin Weps in:

  13. Search for Robin Corgier in:

  14. Search for Tobias Franz in:

  15. Search for Naceur Gaaloul in:

  16. Search for Waldemar Herr in:

  17. Search for Daniel Lüdtke in:

  18. Search for Manuel Popp in:

  19. Search for Sirine Amri in:

  20. Search for Hannes Duncker in:

  21. Search for Maik Erbe in:

  22. Search for Anja Kohfeldt in:

  23. Search for André Kubelka-Lange in:

  24. Search for Claus Braxmaier in:

  25. Search for Eric Charron in:

  26. Search for Wolfgang Ertmer in:

  27. Search for Markus Krutzik in:

  28. Search for Claus Lämmerzahl in:

  29. Search for Achim Peters in:

  30. Search for Wolfgang P. Schleich in:

  31. Search for Klaus Sengstock in:

  32. Search for Reinhold Walser in:

  33. Search for Andreas Wicht in:

  34. Search for Patrick Windpassinger in:

  35. Search for Ernst M. Rasel in:

Contributions

D.B., M.D.L., S.T.S., H.A., A.N.D., J.G., O.H., H.M., V.S., T.W., A.We., B.W., T.F., D.L., M.P., M.E., A.K., H.D., A.K.-L. and M.K. designed, built and tested the apparatus. D.B., M.D.L., H.A., A.N.D., J.G., O.H., H.M., V.S., T.W., A.We. and B.W., with S.T.S. as scientific lead, planned and executed the campaign. D.B., M.D.L. and S.T.S. evaluated the data. N.G., R.C., E.C., S.A., W.H. and D.B. carried out the simulations. E.M.R., W.P.S., M.D.L., D.B. and N.G. wrote the manuscript, with contributions from all authors. C.B., W.E., C.L., A.P., W.P.S., K.S., R.W., A.Wi. and P.W. are the co-principal investigators of the project, and E.M.R. its principal investigator.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Ernst M. Rasel.

Source data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0605-1

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.