Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific

A Publisher Correction to this article was published on 21 March 2019

This article has been updated


Increased storage of carbon in the oceans has been proposed as a mechanism to explain lower concentrations of atmospheric carbon dioxide during ice ages; however, unequivocal signatures of this storage have not been found1. In seawater, the dissolved gases oxygen and carbon dioxide are linked via the production and decay of organic material, with reconstructions of low oxygen concentrations in the past indicating an increase in biologically mediated carbon storage. Marine sediment proxy records have suggested that oxygen concentrations in the deep ocean were indeed lower during the last ice age, but that near-surface and intermediate waters of the Pacific Ocean—a large fraction of which are poorly oxygenated at present—were generally better oxygenated during the glacial1,2,3. This vertical opposition could suggest a minimal net basin-integrated change in carbon storage. Here we apply a dual-proxy approach, incorporating qualitative upper-water-column and quantitative bottom-water oxygen reconstructions4,5, to constrain changes in the vertical extent of low-oxygen waters in the eastern tropical Pacific since the last ice age. Our tandem proxy reconstructions provide evidence of a downward expansion of oxygen depletion in the eastern Pacific during the last glacial, with no indication of greater oxygenation in the upper reaches of the water column. We extrapolate our quantitative deep-water oxygen reconstructions to show that the respired carbon reservoir of the glacial Pacific was substantially increased, establishing it as an important component of the coupled mechanism that led to low levels of atmospheric carbon dioxide during the glacial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of dissolved oxygen concentrations in the eastern Pacific Ocean.
Fig. 2: Reconstructed ETP surface water oxygenation.
Fig. 3: Reconstructed ETP bottom-water oxygen concentrations.

Similar content being viewed by others

Data availability

Data generated during this study are available from

Change history

  • 21 March 2019

    In this Letter, ‘δ18C’ should have been ‘δ13C’ in Fig. 3b, and the x axis should extend to 50 kyr rather than 40 kyr. This figure has been corrected online.


  1. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Galbraith, E. D. & Jaccard, S. L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies. Quat. Sci. Rev. 109, 38–48 (2015).

    Article  Google Scholar 

  3. Bradtmiller, L. I., Anderson, R. F., Sachs, J. P. & Fleisher, M. Q. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth Planet. Sci. Lett. 299, 417–425 (2010).

    Article  ADS  CAS  Google Scholar 

  4. Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. M. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8, 40–43 (2015).

    Article  ADS  CAS  Google Scholar 

  5. Lu, Z. et al. Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nat. Commun. 7, 11146 (2016).

    Article  ADS  CAS  Google Scholar 

  6. Bianchi, D., Dunne, J. P., Sarmiento, J. L. & Galbraith, E. D. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Global Biogeochem. Cycles 26, (2012).

  7. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article  ADS  CAS  Google Scholar 

  8. Keeling, R. E., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    Article  Google Scholar 

  9. Lam, P. & Kuypers, M. M. M. Microbial nitrogen cycling processes in oxygen minimum zones. Ann. Rev. Mar. Sci. 3, 317–345 (2011).

    Article  Google Scholar 

  10. Schmittner, A. & Somes, C. J. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean’s soft-tissue biological pump. Paleoceanography 31, 669–693 (2016).

    Article  ADS  Google Scholar 

  11. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article  ADS  CAS  Google Scholar 

  12. Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    Article  ADS  CAS  Google Scholar 

  13. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  ADS  Google Scholar 

  14. Long, M., Deutsch, C. & Ito, I. Finding forced trends in oceanic oxygen. Global Biogeochem. Cycles 30, 381–397 (2016).

    Article  ADS  CAS  Google Scholar 

  15. Matsumoto, K. Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry. Geophys. Res. Lett. 34, L20605 (2007).

    Article  ADS  Google Scholar 

  16. Pichevin, L. E. et al. Interhemispheric leakage of isotopically heavy nitrate in the eastern tropical Pacific during the last glacial period. Paleoceanography 25, PA1204 (2010).

    Article  ADS  Google Scholar 

  17. Hendy, I. L. & Pedersen, T. F. Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation. Geophys. Res. Lett. 33, L20602 (2006).

    Article  ADS  Google Scholar 

  18. Galbraith, E. D., Kienast, M. & The NICOPP working group members. The acceleration of ocean denitrification during deglacial warming. Nat. Geosci. 6, 579–584 (2013).

    Article  CAS  Google Scholar 

  19. Moffitt, S. E. et al. Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography. PLoS ONE 10, e0115246 (2015).

    Article  Google Scholar 

  20. Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. Iodine to calcium ratios in marine carbonates as a paleo-redox proxy during oceanic anoxic events. Geology 38, 1107–1110 (2010).

    Article  ADS  CAS  Google Scholar 

  21. McCorkle, D. C. & Emerson, S. R. The relationship between pore water carbon isotopic composition and bottom water oxygen concentration. Geochim. Cosmochim. Acta 52, 1169–1178 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    Article  ADS  Google Scholar 

  23. van Geen, A. et al. On the preservation of laminated sediments along the western margin of North America. Paleoceanography 18, 1098 (2003).

  24. Nameroff, T. J., Calvert, E. & Murray, J. W. Glacial–interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography 19, PA1010 (2004).

  25. Costa, K. M. et al. Productivity patterns in the Equatorial Pacific over the last 30,000 years. Global Biogeochem. Cycles 31, 850–865 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Kienast, M. et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846–849 (2006).

    Article  ADS  CAS  Google Scholar 

  27. de la Fuente, M., Skinner, L., Calvo, E., Pelejero, C. & Cacho, I. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nat. Commun. 6, 7420 (2015).

    Article  Google Scholar 

  28. Garcia, H. et al. World Ocean Atlas 2013, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation (ed. Levitus, S.) (NOAA Atlas NESDIS 75, 2013).

  29. Stern, J. V. & Lisiecki, L. E. Termination 1 timing in radiocarbon-dated regional benthic δ18O stacks. Paleoceanography 29, 1127–1142 (2014).

    Article  ADS  Google Scholar 

  30. Benway, H. M., Mix, A. C., Haley, B. A. & Klinkhammer, G. P. Eastern Pacific warm pool paleosalinity and climate variability: 0–30 kyr. Paleoceanography 21, PA3008 (2006).

    Article  ADS  Google Scholar 

  31. Umling, N. E. & Thunell, R. C. Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific. Nat. Commun. 8, 14203 (2017).

    Article  ADS  CAS  Google Scholar 

  32. Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    MathSciNet  MATH  Google Scholar 

  33. Codispotti, L., Yoshinari, T. & Devol, A.H. in Respiration in Aquatic Ecosystems (eds del Giorgio, P. & Williams, P.) Ch. 12 (Oxford Univ. Press, Oxford, 2005).

  34. Mix, A. C. et al. Proc. ODP, Init. Rep. (2003).

  35. Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Global Biogeochem. Cycles 31, 492–514 (2017).

    Article  ADS  CAS  Google Scholar 

  36. Chance, R. et al. Seasonal and interannual variation of dissolved iodine speciation at a coastal Antarctic site. Mar. Chem. 118, 171–181 (2010).

    Article  CAS  Google Scholar 

  37. Spokes, L. J. & Liss, P. L. Photochemically induced redox reactions in seawater, II. Nitrogen and iodide. Mar. Chem. 54, 1–10 (1996).

    Article  CAS  Google Scholar 

  38. Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. The distribution of iodide at the sea surface. Environ. Sci. Process Impacts 16, 1841–1859 (2014).

    Article  CAS  Google Scholar 

  39. Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H. & Bé, A. W. H. Vertical distribution and isotopic fractionation of living planktonic foraminifera in the Panama Basin. Nature 298, 841–844 (1982).

    Article  ADS  CAS  Google Scholar 

  40. Ravelo, A. C. & Fairbanks, R. G. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of modern photic zone temperature gradient. Paleoceanography 7, 815–831 (1992).

    Article  ADS  Google Scholar 

  41. Farmer, E. C., Kaplan, A., de Menocal, P. B. & Lynch-Stieglitz, J. Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable isotope ratios of core top specimens. Paleoceanography 22, (2007).

  42. Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Article  ADS  Google Scholar 

  43. Altabet, M. A. et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Res. Part I 46, 655–679 (1999).

    Article  ADS  CAS  Google Scholar 

  44. Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N. & Haug, G. H. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Global. Biogechem. Cycles 4, 1–22 (2004).

    Google Scholar 

  45. Farrell, J. W., Pedersen, T. F., Calvert, S. E. & Nielsen, B. Glacial–interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377, 514–517 (1995).

    Article  ADS  CAS  Google Scholar 

  46. Devol, A. H. in Nitrogen in the Marine Environment 2nd edn (eds Capone, D. G. et al.) 263–301 (Academic, Burlington, 2008).

  47. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Article  ADS  CAS  Google Scholar 

  48. Debelius, B., Gómez-Parra, A. & Forja, J. M. Oxygen solubility in evaporated seawater as a function of temperature and salinity. Hydrobiologia 632, 157–165 (2009).

    Article  CAS  Google Scholar 

  49. Robinson, R. S., Martinez, P., Pena, L. D. & Cacho, I. Nitrogen isotope evidence for deglacial changes in nutrient supply in the eastern equatorial Pacific. Paleoceanography 24, PA4213 (2009).

    Article  ADS  Google Scholar 

  50. Rafter, P. A. & Charles, C. D. Pleistocene equatorial Pacific dynamics inferred from the zonal asymmetry in sedimentary nitrogen isotopes. Paleoceanography 27, PA3102 (2012).

    Article  ADS  Google Scholar 

  51. Boyer, T. P. et al. World Ocean Database 2013 (ed. Levitus, S.) (NOAA Atlas NESDIS 75, 2013).

Download references


This study benefited from discussions with R. Ganeshram. This work is supported by UK Natural Environment Research Council (NERC) grant NE/I020563/1 (to B.A.A.H.), National Science Foundation (NSF) grants OCE-1232620 and OCE-1736542 (to Z.L.) and Swiss National fund PP00P2_144811 (to O.C.). This research used samples and/or data provided by the Ocean Drilling Program (ODP). ODP is sponsored by the US National Science Foundation and participating countries (Natural Environment Research Council in the UK) under the management of Joint Oceanographic Institutions (JOI), Inc. M. Hall, J. Rolfe and C. Day are acknowledged for help with stable isotope analyses.

Author information

Authors and Affiliations



B.A.A.H. and Z.L. conceived and coordinated the work. B.A.A.H., Z.L., N.U., L.J. and X.Z. carried out data analyses; O.C. carried out data synthesis. B.A.A.H., Z.L. and E.G. constructed the figures and wrote the paper, with contributions from the other co-authors.

Corresponding authors

Correspondence to Babette A. A. Hoogakker or Zunli Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Details of age models for ODP sites 1242 and 849.

a, Matching the ODP site 1242 benthic composite δ18O record to the Pacific Intermediate water stacked δ18O record of ref. 29. b, Matching the ODP site 849 benthic composite δ18O record to the Pacific deep water stacked δ18O record of ref. 29.

Extended Data Fig. 2 Regional bulk sedimentary δ15N records.

Dark green, bulk sedimentary δ15N record of ODP site 124249; light green, bulk sedimentary δ15N record of TR163-25 (this work); black, bulk sedimentary δ15N record of ODP site 84950.

Extended Data Fig. 3 Overview and LGM evolution of carbon isotopes and oxygen concentrations in the eastern tropical Pacific.

a, Dissolved oxygen concentrations (modern: North Atlantic north of 50° N, dark blue; South Atlantic south of 50° S, light blue; southeast Pacific south of 50° S, black; southwest Pacific south of 50° S, grey; northeast Pacific north of 50° N, dark purple; northwest Pacific north of 50° N, light purple; and reconstructed for the past 40 kyr: ODP site 1242, dark green; TR163-25, light green) plotted against carbon isotopes of DIC of seawater (‰) (data from refs 28,51 using Square boxes represent modern values at the two sites; diamonds represent LGM values (average 18–22 kyr bp). b, Latitudinal profile of the difference in Pacific carbon isotopes between the LGM (18–22 kyr, from epifaunal benthic foraminifera) and recent (DIC) seawater carbon isotopes (extrapolated from ref. 34). Inset, histogram of LGM-DIC δ13C (waters deeper than 1.3 km) has a normal distribution (0.1‰ bin width).

Extended Data Table 1 Age control points for ODP sites 1242 and 849
Extended Data Table 2 Age control points for TR163-25

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoogakker, B.A.A., Lu, Z., Umling, N. et al. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562, 410–413 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing