Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asymmetric α-arylation of amino acids

Abstract

Quaternary amino acids, in which the α-carbon that bears the amino and carboxyl groups also carries two carbon substituents, have an important role as modifiers of peptide conformation and bioactivity and as precursors of medicinally important compounds1,2. In contrast to enantioselective alkylation at this α-carbon, for which there are several methods3,4,5,6,7,8, general enantioselective introduction of an aryl substituent at the α-carbon is synthetically challenging9. Nonetheless, the resultant α-aryl amino acids and their derivatives are valuable precursors to bioactive molecules10,11. Here we describe the synthesis of quaternary α-aryl amino acids from enantiopure amino acid precursors by α-arylation without loss of stereochemical integrity. Our approach relies on the temporary formation of a second stereogenic centre in an N′-arylurea adduct12 of an imidazolidinone derivative6 of the precursor amino acid, and uses readily available enantiopure amino acids both as a precursor and as a source of asymmetry. It avoids the use of valuable transition metals, and enables arylation with electron-rich, electron-poor and heterocyclic substituents. Either enantiomer of the product can be formed from a single amino acid precursor. The method is practical and scalable, and provides the opportunity to produce α-arylated quaternary amino acids in multi-gram quantities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stereoselective arylation of amino acids.
Fig. 2: Arylation of amino acids by way of imidazolidinone ureas.
Fig. 3: Scope of the imidazolidinone arylation: amino acids and migrating groups.
Fig. 4: Mechanism of the rearrangement.

Similar content being viewed by others

References

  1. Toniolo, C., Crisma, M., Formaggio, F. & Peggion, C. Control of peptide conformation by the Thorpe–Ingold effect (Cα-tetrasubstitution). Biopolymers 60, 396–419 (2001).

    Article  CAS  Google Scholar 

  2. Meusel, M. & Gütschow, M. Recent developments in hydantoin chemistry. A review. Org. Prep. Proced. Int. 36, 391–443 (2004).

    Article  CAS  Google Scholar 

  3. Cativiela, C. & Díaz-de-Villegas, M. D. Recent progress on the stereoselective synthesis of acyclic quaternary α-amino acids. Tetrahedron Asymmetry 18, 569–623 (2007).

    Article  CAS  Google Scholar 

  4. Hashimoto, T. & Maruoka, K. Recent development and application of chiral phase-transfer catalysts. Chem. Rev. 107, 5656–5682 (2007).

    Article  CAS  Google Scholar 

  5. Schöllkopf, U. Enantioselective synthesis of non-proteinogenic amino acids via metallated bis-lactim ethers of 2,5-diketopiperazines. Tetrahedron 39, 2085–2091 (1983).

    Article  Google Scholar 

  6. Seebach, D., Sting, A. R. & Hoffmann, M. Self-regeneration of stereocenters (SRS)—applications, limitations, and abandonment of a synthetic principle. Angew. Chem. Int. Edn Engl. 35, 2708–2748 (1996).

    Article  CAS  Google Scholar 

  7. Kawabata, T. & Fuji, K. Memory of chirality: asymmetric induction based on the dynamic chirality of enolates. Top. Stereochem. 23, 175–205 (2003).

    Article  CAS  Google Scholar 

  8. Branca, M. et al. Memory of chirality of tertiary aromatic amides: a simple and efficient method for the enantioselective synthesis of quaternary α-amino acids. J. Am. Chem. Soc. 131, 10711–10718 (2009).

    Article  CAS  Google Scholar 

  9. Shirakawa, S., Yamamoto, K. & Maruoka, K. Phase-transfer-catalyzed asymmetric SNAr reaction of α-amino acid derivatives with arene chromium complexes. Angew. Chem. Int. Ed. 54, 838–840 (2015).

    Article  CAS  Google Scholar 

  10. Ma, D. W. Conformationally constrained analogues of l-glutamate as subtype-selective modulators of metabotropic glutamate receptors. Bioorg. Chem. 27, 20–34 (1999).

    Article  CAS  Google Scholar 

  11. Sonowal, H. et al. Aldose reductase inhibitor increases doxorubicin-sensitivity of colon cancer cells and decreases cardiotoxicity. Sci. Rep. 7, 3182 (2017).

    Article  ADS  Google Scholar 

  12. Clayden, J., Dufour, J., Grainger, D. M. & Helliwell, M. Substituted diarylmethylamines by stereospecific intramolecular electrophilic arylation of lithiated ureas. J. Am. Chem. Soc. 129, 7488–7489 (2007).

    Article  CAS  Google Scholar 

  13. Wang, X.-J. et al. Asymmetric synthesis of LFA-1 inhibitor BIRT2584 on metric ton scale. Org. Process Res. Dev. 15, 1185–1191 (2011).

    Article  CAS  Google Scholar 

  14. Yee, N. K. et al. Practical synthesis of a cell adhesion inhibitor by self-regeneration of stereocenters. Tetrahedron Asymmetry 14, 3495–3501 (2003).

    Article  CAS  Google Scholar 

  15. Grainger, D. M. et al. The mechanism of the stereospecific intramolecular arylation of lithiated ureas: the role of Li+ probed by electronic structure calculations, and by NMR and IR spectroscopy. Eur. J. Org. Chem. 4, 731–743 (2012).

    Article  Google Scholar 

  16. Atkinson, R. C. et al. Intramolecular arylation of amino acid enolates. Chem. Commun. 49, 9734–9736 (2013).

    Article  CAS  Google Scholar 

  17. Tomohara, K., Yoshimura, T., Hyakutake, R., Yang, P. & Kawabata, T. Asymmetric α-arylation of amino acid derivatives by Clayden rearrangement of ester enolates via memory of chirality. J. Am. Chem. Soc. 135, 13294–13297 (2013).

    Article  CAS  Google Scholar 

  18. Atkinson, R. C., Fernández-Nieto, F., Mas Roselló, J. & Clayden, J. Pseudoephedrine-directed asymmetric α-arylation of α-amino acid derivatives. Angew. Chem. Int. Ed. 54, 8961–8965 (2015).

    Article  CAS  Google Scholar 

  19. Nagib, D. A., Scott, M. E. & MacMillan, D. W. C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 131, 10875–10877 (2009).

    Article  CAS  Google Scholar 

  20. Wakeham, R. J., Taylor, J. E., Bull, S. D., Morris, J. A. & Williams, J. M. J. Iodide as an activating agent for acid chlorides in acylation reactions. Org. Lett. 15, 702–705 (2013).

    Article  CAS  Google Scholar 

  21. Naef, R. & Seebach, D. Preparation of the enantiomercially pure cis-configurated and trans-configurated 2-(tert-butyl)-3-methylimidazolidin-4-ones from the amino-acids (S)-alanine, (S)-phenylalanine, (R)-phenylglycine, (S)-methionine, and (S)-valine. Helv. Chim. Acta 68, 135–143 (1985).

    Article  CAS  Google Scholar 

  22. Holden, C. M. & Greaney, M. F. Modern aspects of the Smiles rearrangement. Chem Eur. J. 23, 8992–9008 (2017).

    Article  CAS  Google Scholar 

  23. Snape, T. J. A truce on the Smiles rearrangement: revisiting an old reaction—the Truce–Smiles rearrangement. Chem. Soc. Rev. 37, 2452–2458 (2008).

    Article  CAS  Google Scholar 

  24. Sung, R.-Y. et al. Kinetic studies on the nucleophilic substitution reaction of 4-X-substituted-2,6-dinitrochlorobenzene with pyridines in MeOH–MeCN mixtures. Bull. Korean Chem. Soc. 30, 1579–1582 (2009).

    Article  CAS  Google Scholar 

  25. Bunnett, J. F. & Zahler, R. E. Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951).

    Article  CAS  Google Scholar 

  26. Schimler, S. D. et al. Nucleophilic deoxyfluorination of phenols via aryl fluorosulfonate intermediates. J. Am. Chem. Soc. 139, 1452–1455 (2017).

    Article  CAS  Google Scholar 

  27. Neumann, C. N. & Ritter, T. Facile C–F bond formation through a concerted nucleophilic aromatic substitution mediated by the PhenoFluor reagent. Acc. Chem. Res. 50, 2822–2833 (2017).

    Article  CAS  Google Scholar 

  28. Kwan, E. E., Zeng, Y., Besser, H. A. & Jacobsen, E. N. Concerted nucleophilic aromatic substitutions. Nat. Chem. 10, 917–923 (2018).

    Article  CAS  Google Scholar 

  29. Clayden, J., Hennecke, U., Vincent, M. A., Hillier, I. H. & Helliwell, M. The origin of the conformational preference of N,N′-diaryl-N,N′-dimethyl ureas. Phys. Chem. Chem. Phys. 12, 15056–15064 (2010).

    Article  CAS  Google Scholar 

  30. Costil, R. et al. Heavily substituted atropisomeric diarylamines by unactivated Smiles rearrangement of N-aryl anthranilamides. Angew. Chem. Int. Ed. 56, 12533–12537 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the EPSRC (GR/L018527) and ERC (Advanced Grant ROCOCO and Proof of Concept grant QUATERMAIN), and we are grateful to M. M. Amer for assistance with the synthesis of starting materials.

Reviewer information

Nature thanks T. Kawabata and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

D.J.L., J.W.W. and J.C. devised the experiments; D.J.L. and J.W.W. carried out the experiments; D.J.L., J.W.W. and J.C. analysed the results and wrote the paper.

Corresponding author

Correspondence to Jonathan Clayden.

Ethics declarations

Competing interests

The authors have filed a patent on this work (GB1621512.1).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Optimizing the synthesis of 3
Extended Data Table 2 Optimizing the rearrangement of 3 to 4

Supplementary information

Supplementary Information

This file contains: General Information, General Procedures, Experimental Procedures and Characterisation Data, 1H and 13C NMR Spectra, HPLC and SFC Traces, X-Ray Crystallographic Data, Crossover Experiment, In situ IR (ReactIR), and References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonard, D.J., Ward, J.W. & Clayden, J. Asymmetric α-arylation of amino acids. Nature 562, 105–109 (2018). https://doi.org/10.1038/s41586-018-0553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0553-9

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing