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The role of Olfr78 in the breathing circuit of 
mice
arising from A. J. Chang, F. E. Ortega, J. Riegler, D. V. Madison & M. A. Krasnow Nature 527, 240–244 (2015); https://doi.org/10.1038/
nature15721

The carotid body is essential for the adaptation of mammals to envi-
ronmental or pathological conditions that result in hypoxaemia. In 
response to hypoxia, neuron-like oxygen-sensitive glomus cells in the 
carotid body release neurotransmitters that rapidly activate afferent 
sensory fibres that stimulate the respiratory centre and induce hyper-
ventilation1, although the mechanisms by which glomus cells detect 
changes in blood oxygen tension remain unclear2,3. Single dissociated 
glomus cells can respond robustly to hypoxia when superfused with 
standard, lactate-free hypoxic solutions; it was therefore surprising that 
Chang et al.4 claimed that lactate activation of the odorant receptor 
Olfr78, which is abundantly expressed in the carotid body, is required 
for oxygen regulation of breathing. We are unable to replicate these 
findings and show that Olfr78−/− mice have a normal ventilatory 
response to hypoxia and that the physiological responses of single glo-
mus cells to hypoxia and lactate are indistinguishable between wild-
type and Olfr78−/− mice. There is a Reply to this Comment by Chang, 
A. J. et al. Nature 561, https://doi.org/10.1038/s41586-018-0547-7 
(2018).

In addition to being expressed in the main olfactory epithelium, the 
odorant receptor Olfr78 (also known as MOL2.3 and MOR18-2) is 
ectopically expressed in the carotid body4,5 and other mouse tissues, 
such as medulla oblongata6, various sympathetic and parasympathetic 
ganglia7, and the kidney8 and colon9. This odorant receptor confers 
responsiveness to short-chain fatty acids8,9. Three independent sets 
of plethysmographic experiments3,10,11 were performed in Cambridge 
(UK) with mice carrying an Olfr78 null allele12 that were bred and 
maintained in Frankfurt (Germany), and are henceforth referred to as 
‘FRA’ mice. These experiments revealed a similar ventilatory response 
to hypoxia in Olfr78−/− mice compared with wild-type Olfr78+/+ or 
heterozygous Olfr78+/− mice (Extended Data Fig. 1a, b). The first set 
of experiments was carried out before the publication of the previous 
study4, and was followed by two sets of experiments performed by the 
same investigator without knowledge of the genotype. These prelimi-
nary findings led us to design an independent plethysmographic study 
with wild-type and Olfr78−/− FRA mice in Seville (Spain), where these 
whole-animal experiments were followed by analyses of single glomus 
cell responsiveness to hypoxia in in vitro preparations1,3. Wild-type 
and Olfr78−/− littermates were bred and genotyped in Frankfurt, and 
shipped to Seville without providing information about the genotype; 
the coat colour was not indicative of the genotype. The genotypes were 
confirmed in Seville by PCR of genomic DNA (Extended Data Fig. 1c, d)  
after completion of the plethysmographic and cellular (amperometric) 
analyses. A second group of FRA mice, of which the genotype was dis-
closed in advance, was used to study the effect of hypoxia or lactate on 
cytosolic Ca2+ levels in single dissociated glomus cells from wild-type 
and Olfr78−/− mice.

Exposure of FRA mice to hypoxia (10% O2) or hypercapnia (5% 
CO2) elicited characteristic increases in breathing frequency, which did 
not significantly differ between Olfr78−/− and wild-type mice (Fig. 1a, 
b and Extended Data Fig. 2a–d). In parallel experiments performed 
independently at Duke University (United States), normal ventilatory 
responses to hypoxia were observed in homozygous mice carrying 

a different Olfr78-null allele, which had been generated by Lexicon 
Genetics (Extended Data Fig. 2e, ‘LEX’ mice).

It cannot be excluded formally that genetic drift, suppressor muta-
tions or other genetic or epigenetic changes might have occurred in the 
FRA mouse colony. Therefore, in 2017 a new cryorecovery was ordered 
and the resulting heterozygous mice were shipped directly to Seville 
and Duke Universities, without passing through the Frankfurt ani-
mal facility. These colonies (referred to as ‘JAX’ mice) were expanded 
locally and studied after they reached adulthood. Plethysmographic 
analyses performed in the two laboratories showed similar ventilatory 
responses to hypoxia and hypercapnia in wild-type and Olfr78−/− JAX 
mice (Fig. 1c, d and Extended Data Fig. 2f–h). Our results contrast 
markedly with the previous study4, which reported a complete abolition 
of the ventilatory response to hypoxia in Olfr78−/− JAX mice. Their 
mice carried the same Olfr78-null allele12, and had also been obtained 
from The Jackson Laboratory, without passing through Frankfurt.

To investigate the oxygen-sensing properties of Olfr78-deficient glo-
mus cells, tissue slices or enzymatically dissociated cells were obtained 
from the carotid bodies that were dissected out from wild-type and 

O
2 

(%
) 21 

10

**

O
2 

(%
) 21 

10 O
2 

(%
) 21 

10

1 min

**

WT (JAX)

0

100

200

300

50

250

150B
re

at
hi

ng
 r

at
e

(b
re

at
hs

 p
er

 m
in

)

Olfr78–/– (JAX)

b
WT (FRA)

Olfr78–/– (FRA)
Olfr78–/– (FRA)a WT (FRA)

WT (JAX) Olfr78–/– (JAX)
B

as
al

H
yp

ox
ia

B
as

al

H
yp

ox
ia

100

150

200

250

100

150

200

250

O
2 

(%
) 21 

10

B
re

at
hi

ng
 r

at
e

(b
re

at
hs

 p
er

 m
in

)

100

150

200

250

100

150

200

250

0

100

200

300

50

250

150B
re

at
hi

ng
 r

at
e

(b
re

at
hs

 p
er

 m
in

)
B

re
at

hi
ng

 r
at

e
(b

re
at

hs
 p

er
 m

in
)

B
as

al
H

yp
ox

ia

B
as

al

H
yp

ox
ia

dc

B
re

at
hi

ng
 r

at
e

(b
re

at
hs

 p
er

 m
in

)
B

re
at

hi
ng

 r
at

e
(b

re
at

hs
 p

er
 m

in
)

Fig. 1 | Ventilatory responses to hypoxia of wild-type and Olfr78−/− 
mice. a, Plethysmographic recordings (breathing frequency as a measure 
of time) of the ventilatory response to hypoxia (10% O2) performed on 
wild-type (WT; n = 10) and Olfr78−/− (n = 10) FRA mice. Each data 
point represents the mean ± s.e.m. of the values for the group of 10 mice. 
Oxygen (percentage O2) tensions are indicated at the bottom. b, Breathing 
frequency in normoxia (21% O2) and during exposure to hypoxia (10% O2) 
in Olfr78−/− FRA mice (n = 10) compared to their wild-type littermates 
(n = 10). c, d, Similar experiments as in a, b performed with wild-type 
mice (n = 10) and Olfr78−/− mice (n = 10) from the JAX colony. Data are 
mean ± s.e.m. Statistically significant differences compared to basal values 
are indicated; *P < 0.001.
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Olfr78−/− mice. It is well-established that glomus cells, which can be 
activated by hypoxia, hypercapnia and other stimuli, are responsible 
for the chemosensory properties of the carotid body1. Cells in slices or 
dissociated glomus cells exhibit increases in exocytotic dopamine 
release or cytosolic [Ca2+] as an inverse function of oxygen tension  
(pO2

), which parallel the relationship between ventilation and pO2
 

observed in the entire animal1,13,14. We fixed slices of the carotid body 
after studying the cellular responses to hypoxia, and determined  
co-expression of GFP (contained in the gene-targeted Olfr78 allele4,10; 
Extended Data Fig. 1c) and tyroxine hydroxylase (TH), a characteristic 
marker of glomus cells (Extended Data Fig. 3a). In the initial in vitro 

experiments, glomus cells from wild-type and Olfr78−/− FRA mice 
showed similar secretory responses to hypoxia, hypercapnia and high 
K+, as measured by amperometry using a polarized carbon fibre elec-
trode, placed near the cells to oxidize the dopamine molecules that were 
released3,14 (Fig. 2a, b). A normal responsiveness to hypoxia and the 
other stimuli was confirmed in glomus cells from Olfr78−/− JAX mice 
(Fig. 2c). The secretion rate (a measure of the number of dopamine 
molecules released per unit of time)1,3 during exposure to hypoxia were 
the same in glomus cells from wild-type and Olfr78−/− mice of the FRA 
and JAX colonies (Fig. 2d). In addition, single dissociated glomus cells 
of wild-type and Olfr78−/− FRA mice, loaded with Fura-23,14, showed 
no difference in their increases of cytosolic Ca2+ levels to hypoxia 
(Fig. 2e–g). Therefore, our results at the cellular level are consistent with 
our results at the whole-animal level. We confirmed by quantitative 
PCR the absence of Olfr78 mRNA in superior cervical ganglion tissue 
obtained from Olfr78−/− mice. The mRNA levels normalized to wild-
type mice were: Olfr78+/+, 1 ± 0.18, n = 4; Olfr78+/−, 0.52 ± 0.10, n = 5; 
Olfr78−/−, 0.0 ± 0.0, n = 5.

We thus cannot confirm the main conclusion reached in the pre-
vious study4. Genetic drift in a cohort of mice used by Chang et al. 
could have caused a loss of sensitivity of the carotid body to hypoxia 
in a way that is unrelated to the Olfr78 mutation. Another possibility 
is that environmental factors, diet or co-existing microbiome that is 
specific to the animal facility in Stanford at the time of the experi-
ments could have modulated the glomus cell function to become 
dependent on Olfr78. However, we obtained highly consistent data 
using several sources of mice bred or maintained in animal facili-
ties in four countries (Spain, Germany, the United Kingdom and the 
United States).

The absolute requirement of lactate for carotid body activation during  
hypoxia suggested by Chang et al.4 is incompatible with abundant 
data demonstrating that acute responsiveness to hypoxia is a cell- 
autonomous phenomenon, maintained in single dissociated glo-
mus cells perfused with lactate-free solutions1,3,13,14 (Fig. 2e–g). 
Unfortunately, Chang et al. did not support their conclusion with 
recordings of single cells. We have also observed that lactate at relatively 
high concentrations (around 5 mM or higher) can activate glomus  
cells from wild-type as well as Olfr78−/− FRA mice (Extended Data 
Fig. 3b–d). It seems, therefore, that Olfr78 is not required to confer 
lactate responsiveness to glomus cells. Two recent studies reported that 
lactate is a poor agonist for Olfr785,15, using the same heterologous 
expression system that was used in Chang et al.4.

In summary, we conclude that Olfr78 is not required for the ventila-
tory response to hypoxia in mice, and is not required for activation of 
carotid body cells by lactate.

Data availability
Data are available upon request from the corresponding author.
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Fig. 2 | Physiological responses to acute hypoxia in carotid body slices 
and single dissociated glomus cells from wild-type and Olfr78−/− mice. 
a–c, Amperometric recordings showing glomus cell secretory responses to 
hypoxia (pO2

 ≈ 15 mm Hg), hypercapnia (5% CO2) and 40 mM KCl in 
carotid body slices from wild-type (a) and Olfr78−/− (b) mice of the FRA 
colony, as well as Olfr78−/− JAX mice (c). a, The drawing on the left 
illustrates the detection of exocytotic dopamine release by amperometry 
using a polarized carbon-fibre electrode. b, The microphotograph shows 
the carbon-fibre electrode and the intrinsic GFP fluorescence of glomus 
cells from Olfr78−/− mice. d, Secretion rate (picocoulombs per min) in 
basal conditions (normoxia, pO2

 ≈ 145 mm Hg) and in response to hypoxia 
(pO2

 ≈ 15 mm Hg) in carotid body slices from wild-type FRA mice  
(green; n = 23 cells, 9 mice) and wild-type JAX mice (grey; n = 12 cells, 
7 mice) as well as Olfr78−/− FRA mice (purple; n = 19 cells, 7 mice) and 
Olfr78−/− JAX mice (blue; n = 11 cells, 6 mice). e, f, Increases in cytosolic 
Ca2+ levels elicited by hypoxia (Hx; approximately 15 mm Hg) in single, 
dissociated, Fura-2-loaded glomus cells from wild-type (e) and Olfr78−/− 
(f) FRA mice. g, Amplitude of changes in cytosolic Ca2+ levels induced by 
hypoxia in glomus cells from wild-type FRA mice (green; n = 17 cells, 
5 mice) and Olfr78−/− FRA mice (purple; n = 25 cells, 5 mice) relative to 
the signal obtained with 40 mM K+. Data are expressed as mean ± s.e.m.
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Extended Data Fig. 1 | Ventilatory responses to hypoxia and genotyping 
in wild-type and Olfr78−/− mice. a, Plethysmographic recordings 
(breathing frequency as a measure of time) of the ventilatory response 
to hypoxia (10% O2). Each data point represents the mean ± s.e.m. of 
the values for control mice (n = 10; 7 wild-type and 3 heterozygous mice 
pooled together) and Olfr78−/− mice (n = 9) of the FRA colony. The 
grey-shaded area indicates the first five consecutive measurements after 
the transition to hypoxia used for quantification (see Supplementary 
Information). b, Breathing frequency in normoxia (basal) and during 
exposure to hypoxia (10% O2) of control FRA mice (n = 10, 7 wild-type 
and 3 heterozygous mice) and Olfr78−/− FRA mice (n = 9). Data are 

mean ± s.e.m. Statistically significant differences compared to basal 
values are indicated; *P < 0.001. c, Schematic of the wild-type and gene-
targeted Olfr78 alleles. Olfr78, intronless coding region of Olfr78; GFP, 
green-fluorescent protein; IRES, internal ribosome entry site; taulacZ, 
fusion of bovine tau with β-galactosidase. The arrows indicate the position 
and orientation of PCR primers used for genotyping. d, Genotyping of 
genomic tail DNA of wild-type (Olfr78+/+) and homozygous (Olfr78−/−) 
mice by PCR. The PCR primer pair ‘CONTROL’ amplifies the wild-type 
Olfr78 allele; the PCR primer pair ‘GFP’ amplifies internal GFP sequences; 
and the PCR primer pair ‘MUT’ amplifies the gene-targeted Olfr78 allele.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Ventilatory responses to hypoxia and 
hypercapnia in wild-type and Olfr78−/− mice. a, b, Representative 
examples of plethysmographic recordings (breathing frequency) during 
exposure to hypoxia (10% O2) and hypercapnia (5% CO2) in a wild-
type FRA mouse and in a Olfr78−/− FRA mouse. c, Plethysmographic 
recordings (breathing frequency as a measure of time) of the ventilatory 
response to hypercapnia (5% CO2) performed on wild-type (n = 10) and 
Olfr78−/− (n = 10) FRA mice. Each data point represents the mean ± s.e.m. 
of the values for the group of 10 mice. CO2 (percentage CO2) tensions 
are indicated at the bottom. d, Breathing frequency during exposure to 
hypercapnia (5% CO2) in Olfr78−/− FRA mice (n = 10) compared to their 
wild-type littermates (n = 10). e, Breathing frequency during exposure 
to hypoxia (10% O2) in Olfr78−/− LEX mice compared to wild-type LEX 

mice (n = 10 for each genotype, 7 pairs in a C57BL/6 background, 3 pairs 
in a C57BL/6:129S5 mixed background, 9 out of 10 pairs are sex-matched 
littermates). f, Breathing frequency during exposure to hypoxia  
(10% O2) in Olfr78−/− JAX mice (n = 6) compared to their wild-type 
littermates (n = 5), in experiments carried out at Duke University.  
g, Plethysmographic recordings (breathing frequency as a measure of 
time) of the ventilatory response to hypercapnia (5% CO2) performed 
on wild-type (n = 7) and Olfr78−/− (n = 7) JAX mice. Each data point 
represents the mean ± s.e.m. CO2 (percentage CO2) tensions are indicated 
at the bottom. h, Breathing frequency during exposure to hypercapnia 
(5% CO2) in Olfr78−/− JAX mice (n = 7) compared to their wild-type 
littermates (n = 7). Data are mean ± s.e.m. Statistically significant 
differences compared to basal values are indicated; *P < 0.001.
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Extended Data Fig. 3 | Changes in cellular parameters elicited by lactate 
in carotid body glomus cells from wild-type and Olfr78−/− FRA mice. 
a, Immunohistochemical detection of GFP and tyrosine hydroxylase (TH) 
in a carotid body slice from an Olfr78−/− FRA mouse. b, Representative 
examples of quantal dopamine secretion from glomus cells in carotid 
body slices of wild-type FRA mice (left) and Olfr78−/− FRA mice (right) 
in response to external application of l-lactate (sodium lactate, 5 mM). 

c, Representative examples of increase in cytosolic Ca2+ levels elicited by 
l-lactate (5 mM) in single dissociated glomus cells from wild-type FRA 
mice (left) and Olfr78−/− FRA mice (right). d, Amplitude of changes in 
cytosolic Ca2+ levels induced by lactate in glomus cells from wild-type 
FRA mice (green, n = 16 cells, 5 mice) and Olfr78−/− FRA mice (purple, 
n = 14 cells, 5 mice) relative to the signal obtained with 40 mM K+. Data 
are mean ± s.e.m.
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Chang et al. reply
replying to H. Torres-Torrelo et al. Nature 561, https://doi.org/10.1038/s41586-018-0545-9 (2018)

In the accompanying Comment, Torres-Torrelo et al.1, and others  
previously2, confirmed the following key findings of our paper3: Olfr78 
is highly and selectively expressed in carotid body glomus cells; Olfr78 
can be activated by lactate, as measured in Olfr78-transfected cultured 
cells; and lactate activates glomus cells at low-millimolar concentrations, 
within the physiological concentration range of lactate and the range 
that we measured for lactate activation (half-maximum effective con-
centration (EC50) of around 4 mM) of Olfr78-transfected cultured cells.

The major difference that can be compared is in the observed behav-
ioural response of Olfr78−/− mutant mice to acute hypoxia (hypoxic 
ventilatory response). The Olfr78tm1Mom mutants used in our original 
study were cryorecovered by JAX in 2010 from sperm in a mixed 129P2/
OlaHsd × C57BL/6J background3,4, but a marked decline in breeding 
in heterozygous intercrossed mice within three years of obtaining the 
animals prevented us from retesting the same cohort now. To address 
differences between the results presented by Torres-Torrelo et al.1 and 
our previous study3, we instead tested female progeny of newly cryore-
covered Olfr78+/− mutant mice from JAX as well as Olfr78+/− mutant 
mice from the Frankfurt colony using behavioural protocols similar 
to our original study and the protocol used by Torres-Torrelo et al.1. 
Surprisingly, we did not observe a consistent defect in the hypoxic venti-
latory response of either current strain under these conditions. Although 
we cannot exclude an effect due to differences in our current versus 
previous test conditions (the animal facility and equipment used in our 
original experiments in 2011 are no longer available), it seems more 
likely that the original cohort had an unusual genetic background that 
rendered a defect in this response more apparent in Olfr78−/− mutants. 
Because the carotid body response to hypoxia is still partially intact in 
Olfr78−/− mutants, including a fully functional response to acid3 that 
contributes to carotid body oxygen sensing5, the behavioural response to 
hypoxia is likely to be highly sensitive to differences in assay conditions 
and genetic background6, as observed for mutants in the acid-sensing 
pathway5,7. We proposed that glomus cells separately sense both the 
extracellular lactate and hydrogen ions from lactic acid produced dur-
ing acute hypoxia3; it may be necessary to disrupt both pathways simul-
taneously and acutely to observe a robust effect in behavioural assays.

Although we did not find a consistent defect in the hypoxic venti-
latory response in the current Olfr78 mutant strains, curiously we did 
observe a greater variance in their ventilatory frequency in hypoxia 
compared to wild-type littermates. Therefore, in addition to potential 
functional redundancy between Olfr78 and acid-sensing pathways, 
there may be a variable compensatory response induced by Olfr78 
loss. This could involve either of these carotid body pathways, or the 
peripheral and central adaptation mechanisms that restore a hypoxic 
ventilatory response following bilateral carotid body denervation8,9.

The results of Torres-Torrelo et al.1 from carotid body slices and 
isolated cells cannot be directly compared to our results derived from 
monitoring the integrated sensory output of the intact carotid body by 
recordings of the carotid sinus nerve. There is growing evidence that 
sensory signalling involves communication between glomus cells and 
other carotid body cells10, so the effect of Olfr78 on signalling may be 
apparent only in the intact organ. Furthermore, Torres-Torrelo et al.1 
measured release of dopamine, which is not an excitatory transmitter  
in the rodent carotid body11, and calcium responses of the glomus cells. 
Olfr78 may regulate a signalling step in glomus cells that is downstream 
or parallel to these responses, so the observations of Torres-Torrelo 
et al.1 are not incompatible with our nerve recordings. A similar pair 
of seemingly contradictory observations was previously described for 

acid-sensing mutants, in which the carotid sinus nerve response to 
hypoxia was partially defective in mutants but the dopamine response 
was intact5,12. It will be important to determine not only how Olfr78 
activity in glomus cells is modulated by lactate produced under hypoxia, 
but also which signalling step(s) the activated receptor regulates.

We thank Torres-Torrelo et al.1 for their experiments showing that the 
Olfr78 mutant phenotype is more complex than our original experiments 
revealed, and for motivating us and others to carefully define the relation-
ship of Olfr78 to other pathways implicated in oxygen sensing in the carotid 
body and the physiological and genetic compensatory mechanisms that 
can influence them and other aspects of the hypoxic ventilatory response.

Three of the listed authors (N.S.K., H.H. and A.D.) contributed only 
to the work contained in this Reply.
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