A new era in the search for dark matter

Abstract

There is a growing sense of ‘crisis’ in the dark-matter particle community, which arises from the absence of evidence for the most popular candidates for dark-matter particles—such as weakly interacting massive particles, axions and sterile neutrinos—despite the enormous effort that has gone into searching for these particles. Here we discuss what we have learned about the nature of dark matter from past experiments and the implications for planned dark-matter searches in the next decade. We argue that diversifying the experimental effort and incorporating astronomical surveys and gravitational-wave observations is our best hope of making progress on the dark-matter problem.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Possible solutions to the dark-matter problem.

References

  1. 1.

    Bertone, G. & Hooper, D. A history of dark matter. Rev. Mod. Phys. (in the press); preprint at https://arxiv.org/abs/1605.04909. A broad historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  2. 2.

    de Swart, J. G., Bertone, G. & van Dongen, J. How dark matter came to matter. Nat. Astron. 1, 0059 (2017).

    Google Scholar 

  3. 3.

    Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Google Scholar 

  4. 4.

    Bertone, G. et al. Particle Dark Matter: Observations, Models and Searches (Cambridge Univ. Press, Cambridge, 2010).

  5. 5.

    Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).

    ADS  Google Scholar 

  6. 6.

    Bird, S. et al. Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2016). Shortly after the LIGO detection of gravitational waves, this paper revived the hypothesis that dark matter is made of primordial black holes.

    ADS  PubMed  Google Scholar 

  7. 7.

    Clesse, S. & García-Bellido, J. Detecting the gravitational wave background from primordial black hole dark matter. Phys. Dark Universe 18, 105–114 (2017).

    ADS  Google Scholar 

  8. 8.

    Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005).

    ADS  CAS  Google Scholar 

  9. 9.

    de Gouvêa, A., Hernández, D. & Tait, T. M. P. Criteria for natural hierarchies. Phys. Rev. D 89, 115005 (2014).

    ADS  Google Scholar 

  10. 10.

    Dine, M. Naturalness under stress. Annu. Rev. Nucl. Part. Sci. 65, 43–62 (2015).

    ADS  CAS  Google Scholar 

  11. 11.

    Bertone, G. The moment of truth for WIMP dark matter. Nature 468, 389–393 (2010). This 2010 review anticipated that absence of evidence for WIMPs within 5 to 10 years would inevitably lead to the decline of the WIMP paradigm.

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Giudice, G. F. The dawn of the post-naturalness era. Preprint at https://arxiv.org/abs/1710.07663 (2017). This article argued that after decades of particle physics research driven by naturalness arguments, we are now witnessing the dawn of the ‘post-naturalness’ era.

  13. 13.

    Athron, P. et al. Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C 77, 824 (2017).

    ADS  Google Scholar 

  14. 14.

    van Beekveld, M., Beenakker, W., Caron, S., Peeters, R. & Ruiz de Austri, R. Supersymmetry with dark matter is still natural. Phys. Rev. D 96, 035015 (2017).

    ADS  Google Scholar 

  15. 15.

    Ross, G. G., Schmidt-Hoberg, K. & Staub, F. Revisiting fine-tuning in the MSSM. J. High Energy Phys. 03, 021 (2017).

    ADS  Google Scholar 

  16. 16.

    Goodman, J. et al. Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010). This paper showed that colliders may detect dark matter even in cases where the expected direct and indirect detection signals are highly suppressed.

    ADS  Google Scholar 

  17. 17.

    Abdallah, J. et al. Simplified models for dark matter searches at the LHC. Phys. Dark Universe 9–10, 8–23 (2015).

    ADS  Google Scholar 

  18. 18.

    Beltran, M., Hooper, D., Kolb, E. W., Krusberg, Z. A. C. & Tait, T. M. P. Maverick dark matter at colliders. J. High Energy Phys. 09, 037 (2010).

    ADS  Google Scholar 

  19. 19.

    Essig, R., Mardon, J. & Volansky, T. Direct detection of sub-GeV dark matter. Phys. Rev. D 85, 076007 (2012).

    ADS  Google Scholar 

  20. 20.

    Hochberg, Y., Zhao, Y. & Zurek, K. M. Superconducting detectors for superlight dark matter. Phys. Rev. Lett. 116, 011301 (2016).

    ADS  PubMed  Google Scholar 

  21. 21.

    Knapen, S., Lin, T. & Zurek, K. M. Light dark matter in superfluid helium: detection with multi-excitation production. Phys. Rev. D 95, 056019 (2017).

    ADS  Google Scholar 

  22. 22.

    Hochberg, Y. et al. Detection of sub-MeV dark matter with three-dimensional Dirac materials. Phys. Rev. D 97, 015004 (2018).

    ADS  CAS  Google Scholar 

  23. 23.

    Essig, R., Schuster, P. & Toro, N. Probing dark forces and light hidden sectors at low-energy e+e colliders. Phys. Rev. D 80, 015003 (2009).

    ADS  Google Scholar 

  24. 24.

    Silverwood, H., Weniger, C., Scott, P. & Bertone, G. A realistic assessment of the CTA sensitivity to dark matter annihilation. J. Cosmol. Astropart. Phys. 1503, 055 (2015).

    ADS  Google Scholar 

  25. 25.

    Acharya, B. S. et al. Science with the Cherenkov Telescope Array. Preprint at https://arxiv.org/abs/1709.07997 (2017).

  26. 26.

    Abbott, L. F. & Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 120, 133–136 (1983).

    ADS  Google Scholar 

  27. 27.

    Du, N. et al. A search for invisible axion dark matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 120, 151301 (2018).

    ADS  CAS  PubMed  Google Scholar 

  28. 28.

    Kahn, Y., Safdi, B. R. & Thaler, J. Broadband and resonant approaches to axion dark matter detection. Phys. Rev. Lett. 117, 141801 (2016).

    ADS  PubMed  Google Scholar 

  29. 29.

    Graham, P. W., Irastorza, I. G., Lamoreaux, S. K., Lindner, A. & van Bibber, K. A. Experimental searches for the axion and axion-like particles. Annu. Rev. Nucl. Part. Sci. 65, 485–514 (2015). A comprehensive review of present and upcoming experimental searches for axions and axion-like particles.

    ADS  CAS  Google Scholar 

  30. 30.

    Caldwell, A. et al. Dielectric haloscopes: a new way to detect axion dark matter. Phys. Rev. Lett. 118, 091801 (2017).

    ADS  PubMed  Google Scholar 

  31. 31.

    Shi, X.-D. & Fuller, G. M. A new dark matter candidate: nonthermal sterile neutrinos. Phys. Rev. Lett. 82, 2832–2835 (1999).

    ADS  CAS  Google Scholar 

  32. 32.

    Laine, M. & Shaposhnikov, M. Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry. J. Cosmol. Astropart. Phys. 0806, 031 (2008).

    ADS  Google Scholar 

  33. 33.

    Boyarsky, A., Ruchayskiy, O. & Shaposhnikov, M. The role of sterile neutrinos in cosmology and astrophysics. Annu. Rev. Nucl. Part. Sci. 59, 191–214 (2009).

    ADS  CAS  Google Scholar 

  34. 34.

    Drewes, M. et al. A white paper on keV sterile neutrino dark matter. J. Cosmol. Astropart. Phys. 1701, 025 (2017).

    Google Scholar 

  35. 35.

    Bulbul, E. et al. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters. Astrophys. J. 789, 13 (2014).

    ADS  Google Scholar 

  36. 36.

    Jeltema, T. E. & Profumo, S. Discovery of a 3.5 keV line in the Galactic Centre and a critical look at the origin of the line across astronomical targets. Mon. Not. R. Astron. Soc. 450, 2143–2152 (2015).

    ADS  CAS  Google Scholar 

  37. 37.

    Abazajian, K. N. Sterile neutrinos in cosmology. Phys. Rep. 711–712, 1–28 (2017). A comprehensive review of the astroparticle and cosmological aspects of sterile neutrinos.

    ADS  MATH  Google Scholar 

  38. 38.

    Kolb, E. W., Chung, D. J. H. & Riotto, A. WIMPzillas! AIP Conf. Proc. 484, 91–105 (1999).

    ADS  CAS  MATH  Google Scholar 

  39. 39.

    Berezhiani, L. & Khoury, J. Theory of dark matter superfluidity. Phys. Rev. D 92, 103510 (2015).

    ADS  Google Scholar 

  40. 40.

    Kuhnel, F., Starkman, G. D., Freese, K. & Matas, A. Primordial black-hole and macroscopic dark-matter constraints with LISA. Preprint at https://arxiv.org/abs/1705.10361 (2017).

  41. 41.

    Buckley, M. R. & Peter, A. H. G. Gravitational probes of dark matter physics. Preprint at https://arxiv.org/abs/1712.06615 (2017). A review of the expected impact of future astrophysical measurements on our understanding of dark matter.

  42. 42.

    Riess, A. G. et al. New parallaxes of Galactic Cepheids from spatially scanning the Hubble Space Telescope: implications for the Hubble constant. Astrophys. J. 855 136 (2018).

    ADS  Google Scholar 

  43. 43.

    Frenk, C. S. & White, S. D. M. Dark matter and cosmic structure. Ann. Phys. 524, 507–534 (2012).

    Google Scholar 

  44. 44.

    Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    ADS  CAS  PubMed  Google Scholar 

  45. 45.

    Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rep. 730, 1–57 (2018).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  46. 46.

    Brinckmann, T., Zavala, J., Rapetti, D., Hansen, S. H. & Vogelsberger, M. The structure and assembly history of cluster-sized haloes in self-interacting dark matter. Mon. Not. R. Astron. Soc. 474, 746–759 (2018).

    ADS  CAS  Google Scholar 

  47. 47.

    Robertson, A. et al. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons. Mon. Not. R. Astron. Soc. 476, L20 (2018).

    ADS  Google Scholar 

  48. 48.

    Kaplinghat, M., Keeley, R. E., Linden, T. & Yu, H.-B. Tying dark matter to baryons with selfinteractions. Phys. Rev. Lett. 113, 021302 (2014).

    ADS  PubMed  Google Scholar 

  49. 49.

    Harvey, D., Massey, R., Kitching, T., Taylor, A. & Tittley, E. The non-gravitational interactions of dark matter in colliding galaxy clusters. Science 347, 1462–1465 (2015).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Robertson, A., Massey, R. & Eke, V. Cosmic particle colliders: simulations of self-interacting dark matter with anisotropic scattering. Mon. Not. R. Astron. Soc. 467, 4719–4730 (2017).

    ADS  CAS  Google Scholar 

  51. 51.

    Randall, S. W., Markevitch, M., Clowe, D., Gonzalez, A. H. & Bradac, M. Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657–56. Astrophys. J. 679, 1173–1180 (2008).

    ADS  CAS  Google Scholar 

  52. 52.

    Harvey, D., Courbin, F., Kneib, J. P. & McCarthy, I. G. A detection of wobbling brightest cluster galaxies within massive galaxy clusters. Mon. Not. R. Astron. Soc. 472, 1972–1980 (2017).

    ADS  CAS  Google Scholar 

  53. 53.

    Narayanan, V. K., Spergel, D. N., Dave, R. & Ma, C.-P. Constraints on the mass of warm dark matter particles and the shape of the linear power spectrum from the Lyα forest. Astrophys. J. 543, L103–L106 (2000).

    ADS  CAS  Google Scholar 

  54. 54.

    Iršič, V. et al. New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 96, 023522 (2017).

    ADS  MathSciNet  Google Scholar 

  55. 55.

    Iršič, V., Viel, M., Haehnelt, M. G., Bolton, J. S. & Becker, G. D. First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. Phys. Rev. Lett. 119, 031302 (2017).

    ADS  PubMed  Google Scholar 

  56. 56.

    Yoon, J. H., Johnston, K. V. & Hogg, D. W. Clumpy streams from clumpy halos: detecting missing satellites with cold stellar structures. Astrophys. J. 731, 58 (2011).

    ADS  Google Scholar 

  57. 57.

    Carlberg, R. G. Dark matter sub-halo counts via star stream crossings. Astrophys. J. 748, 20 (2012).

    ADS  Google Scholar 

  58. 58.

    Bovy, J., Erkal, D. & Sanders, J. L. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum. Mon. Not. R. Astron. Soc. 466, 628–668 (2017).

    ADS  CAS  Google Scholar 

  59. 59.

    Erkal, D. & Belokurov, V. Properties of dark subhaloes from gaps in tidal streams. Mon. Not. R. Astron. Soc. 454, 3542–3558 (2015).

    ADS  CAS  Google Scholar 

  60. 60.

    Banik, N., Bertone, G., Bovy, J. & Bozorgnia, N. Probing the nature of dark matter particles with stellar streams. J. Cosmol. Astropart. Phys. 7 061 (2018).

    ADS  Google Scholar 

  61. 61.

    Mao, S. & Schneider, P. Evidence for substructure in lens galaxies? Mon. Not. R. Astron. Soc. 295, 587 (1998).

    ADS  Google Scholar 

  62. 62.

    Metcalf, R. B. & Madau, P. Compound gravitational lensing as a probe of dark matter substructure within galaxy halos. Astrophys. J. 563, 9–20 (2001).

    ADS  Google Scholar 

  63. 63.

    Dalal, N. & Kochanek, C. S. Direct detection of cold dark matter substructure. Astrophys. J. 572, 25–33 (2002).

    ADS  CAS  Google Scholar 

  64. 64.

    Gilman, D., Birrer, S., Treu, T. & Keeton, C. R. Probing the nature of dark matter by forward modelling flux ratios in strong gravitational lenses. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/sty2261 (2018).

    ADS  Google Scholar 

  65. 65.

    Vegetti, S. & Koopmans, L. V. E. Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in galaxies. Mon. Not. R. Astron. Soc. 392, 945 (2009).

    ADS  Google Scholar 

  66. 66.

    Despali, G., Vegetti, S., White, S. D. M., Giocoli, C. & van den Bosch, F. C. Modelling the line-of-sight contribution in substructure lensing. Mon. Not. R. Astron. Soc. 475, 5424–5442 (2018).

    ADS  CAS  Google Scholar 

  67. 67.

    Oguri, M. & Marshall, P. J. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. Mon. Not. R. Astron. Soc. 405, 2579–2593 (2010).

    ADS  Google Scholar 

  68. 68.

    Daylan, T., Cyr-Racine, F.-Y., Diaz Rivero, A., Dvorkin, C. & Finkbeiner, D. P. Probing the small-scale structure in strongly lensed systems via transdimensional inference. Astrophys. J. 854, 141 (2018).

    ADS  Google Scholar 

  69. 69.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  CAS  Google Scholar 

  70. 70.

    Barack, L. et al. Black holes, gravitational waves and fundamental physics: a roadmap. Preprint at https://arxiv.org/abs/1806.05195 (2018). This article contains a discussion about the role of gravitational waves in the search for dark matter.

  71. 71.

    Carr, B., Kuhnel, F. & Sandstad, M. Primordial black holes as dark matter. Phys. Rev. D 94, 083504 (2016).

    ADS  Google Scholar 

  72. 72.

    Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial black hole scenario for the gravitational-wave event GW150914. Phys. Rev. Lett. 117, 061101 (2016).

    ADS  PubMed  Google Scholar 

  73. 73.

    Ali-Haïmoud, Y., Kovetz, E. D. & Kamionkowski, M. Merger rate of primordial black-hole binaries. Phys. Rev. D 96, 123523 (2017).

    ADS  Google Scholar 

  74. 74.

    Kavanagh, B. J., Gaggero, D. & Bertone, G. Merger rate of a subdominant population of primordial black holes. Phys. Rev. D 98, 023536 (2018).

    ADS  CAS  Google Scholar 

  75. 75.

    Gaggero, D. et al. Searching for primordial black holes in the radio and X-ray sky. Phys. Rev. Lett. 118, 241101 (2017).

    ADS  PubMed  Google Scholar 

  76. 76.

    Lacki, B. C. & Beacom, J. F. Primordial black holes as dark matter: almost all or almost nothing. Astrophys. J. 720, L67–L71 (2010).

    ADS  CAS  Google Scholar 

  77. 77.

    Koushiappas, S. M. & Loeb, A. Maximum redshift of gravitational wave merger events. Phys. Rev. Lett. 119, 221104 (2017).

    ADS  PubMed  Google Scholar 

  78. 78.

    Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).

    ADS  Google Scholar 

  79. 79.

    Moffat, J. W. Scalar-tensor-vector gravity theory. J. Cosmol. Astropart. Phys. 0603, 004 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  80. 80.

    Verlinde, E. P. Emergent gravity and the dark Universe. SciPost Phys. 2, 016 (2017).

    ADS  Google Scholar 

  81. 81.

    Abbott, B. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS  CAS  PubMed  Google Scholar 

  82. 82.

    Boran, S., Desai, S., Kahya, E. O. & Woodard, R. P. GW170817 falsifies dark matter emulators. Phys. Rev. D 97, 041501 (2018).

    ADS  CAS  Google Scholar 

  83. 83.

    Sakstein, J. & Jain, B. Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys. Rev. Lett. 119, 251303 (2017).

    ADS  PubMed  Google Scholar 

  84. 84.

    Wang, H. et al. The GW170817/GRB 170817A/AT 2017gfo association: some implications for physics and astrophysics. Astrophys. J. 851, L18 (2017).

    ADS  Google Scholar 

  85. 85.

    Bekenstein, J. D. Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004); erratum 71, 069901 (2005).

    ADS  Google Scholar 

  86. 86.

    Gondolo, P. & Silk, J. Dark matter annihilation at the galactic center. Phys. Rev. Lett. 83, 1719–1722 (1999).

    ADS  CAS  Google Scholar 

  87. 87.

    Merritt, D., Milosavljevic, M., Verde, L. & Jimenez, R. Dark matter spikes and annihilation radiation from the galactic center. Phys. Rev. Lett. 88, 191301 (2002).

    ADS  PubMed  Google Scholar 

  88. 88.

    Bertone, G. & Merritt, D. Time-dependent models for dark matter at the Galactic Center. Phys. Rev. D 72, 103502 (2005).

    ADS  Google Scholar 

  89. 89.

    Bertone, G., Zentner, A. R. & Silk, J. A new signature of dark matter annihilations: gamma-rays from intermediate-mass black holes. Phys. Rev. D 72, 103517 (2005).

    ADS  Google Scholar 

  90. 90.

    Ricotti, M., Ostriker, J. P. & Mack, K. J. Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829–845 (2008).

    ADS  Google Scholar 

  91. 91.

    Brito, R. et al. Gravitational wave searches for ultralight bosons with LIGO and LISA. Phys. Rev. D 96, 064050 (2017).

    ADS  Google Scholar 

  92. 92.

    Arvanitaki, A., Baryakhtar, M., Dimopoulos, S., Dubovsky, S. & Lasenby, R. Black hole mergers and the QCD axion at advanced LIGO. Phys. Rev. D 95, 043001 (2017).

    ADS  Google Scholar 

  93. 93.

    Baumann, D., Chia, H. S. & Porto, R. A. Probing ultralight bosons with binary black holes. Preprint at https://arxiv.org/abs/1804.03208 (2018).

  94. 94.

    Billard, J., Strigari, L. & Figueroa-Feliciano, E. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 89, 023524 (2014).

    ADS  Google Scholar 

  95. 95.

    Bertone, G. et al. Identifying WIMP dark matter from particle and astroparticle data. J. Cosmol. Astropart. Phys. 1803, 026 (2018).

    ADS  Google Scholar 

  96. 96.

    Caron, S., Kim, J. S., Rolbiecki, K., Ruiz de Austri, R. & Stienen, B. The BSM-AI project: SUSYAI–generalizing LHC limits on supersymmetry with machine learning. Eur. Phys. J. C 77, 257 (2017).

    ADS  PubMed  Google Scholar 

  97. 97.

    Hezaveh, Y. D., Perreault Levasseur, L. & Marshall, P. J. Fast automated analysis of strong gravitational lenses with convolutional neural networks. Nature 548, 555–557 (2017). An interesting example of the application of machine-learning methods to dark matter studies.

    ADS  CAS  PubMed  Google Scholar 

  98. 98.

    Larkoski, A. J., Moult, I. & Nachman, B. Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning. Preprint at https://arxiv.org/abs/1709.04464 (2017).

  99. 99.

    George, D. & Huerta, E. A. Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2018).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Cardoso, D. Gaggero, D. Harvey, D. Hooper, B. Kavanagh, S. Vegetti and M. Viel for comments on the initial version of this manuscript. The work of T.M.P.T. is supported in part by NSF grant PHY-1316792.

Reviewer information

Nature thanks M. Kamionkowski and R. Massey for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

G.B. conceived the idea of the review. G.B. and T.M.P.T. contributed equally to the writing of the manuscript.

Corresponding authors

Correspondence to Gianfranco Bertone or Tim M. P. Tait.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertone, G., Tait, T.M.P. A new era in the search for dark matter. Nature 562, 51–56 (2018). https://doi.org/10.1038/s41586-018-0542-z

Download citation

Keywords

  • Dark Matter
  • Weakly Interacting Massive Particles (WIMPs)
  • Separator For Heavy Ion Reaction Products (SHIP)
  • Primordial Black Holes
  • Large Synoptic Survey Telescope (LSST)

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.