Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An evolving jet from a strongly magnetized accreting X-ray pulsar

Abstract

Relativistic jets are observed throughout the Universe and strongly affect their surrounding environments on a range of physical scales, from Galactic binary systems1 to galaxies and clusters of galaxies2. All types of accreting black hole and neutron star have been observed to launch jets3, with the exception of neutron stars with strong magnetic fields4,5 (higher than 1012 gauss), leading to the conclusion that their magnetic field strength inhibits jet formation6. However, radio emission recently detected from two such objects could have a jet origin, among other possible explanations7,8, indicating that this long-standing idea might need to be reconsidered. But definitive observational evidence of such jets is still lacking. Here we report observations of an evolving jet launched by a strongly magnetized neutron star accreting above the theoretical maximum rate given by the Eddington limit. The radio luminosity of the jet is two orders of magnitude fainter than those seen in other neutron stars with similar X-ray luminosities9, implying an important role for the properties of the neutron star in regulating jet power. Our result also shows that the strong magnetic fields of ultra-luminous X-ray pulsars do not prevent such sources from launching jets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radio and X-ray outburst light curve of Sw J0243.
Fig. 2: VLA detection images of Sw J0243.
Fig. 3: Radio and X-ray luminosities for X-ray binaries.

Similar content being viewed by others

Data availability

The VLA observations analysed in this work will become publicly available in the NRAO Science Data Archive (https://archive.nrao.edu/archive/advquery.jsp) on 8 November 2018 (first two epochs) and 20 February 2019 (remaining epochs), under project codes 17B-406 and 17B-420, respectively. However, prior access to the VLA observations will be granted by the corresponding author upon reasonable request. All Swift X-ray data are accessible in the HEASARC data archive. The radio–X-ray correlation data sample is available online at https://github.com/jvandeneijnden/XRB-Lx-Lr-Sample.

References

  1. Gallo, E. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005).

    ADS  CAS  Google Scholar 

  2. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    ADS  CAS  Google Scholar 

  3. Fender, R. Disc-jet-wind coupling in black hole binaries, and other stories. Astron. Nachr. 337, 381–384 (2016).

    ADS  Google Scholar 

  4. Fender, R. P. & Hendry, M. A. The radio luminosity of persistent X-ray binaries. Mon. Not. R. Astron. Soc. 317, 1–8 (2000).

    ADS  CAS  Google Scholar 

  5. Migliari, S., Ghisellini, G., Miller-Jones, J. & Russell, D. Jet models for neutron star X-ray binaries. Int. J. Mod. Phys. 8, 108–113 (2012).

    CAS  Google Scholar 

  6. Massi, M. & Kaufman Bernadó, M. Magnetic field upper limits for jet formation. Astron. Astrophys. 477, 1–7 (2008).

    ADS  CAS  Google Scholar 

  7. van den Eijnden, J. et al. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star? Mon. Not. R. Astron. Soc. 473, L141–L145 (2018).

    ADS  Google Scholar 

  8. van den Eijnden, J. et al. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4. Mon. Not. R. Astron. Soc. 474, L91–L95 (2018).

    ADS  Google Scholar 

  9. Migliari, S. & Fender, R. P. Jets in neutron star X-ray binaries: a comparison with black holes. Mon. Not. R. Astron. Soc. 366, 79–91 (2006).

    ADS  Google Scholar 

  10. Kennea, J. A., Lien, A. Y., Krimm, H. A., Cenko, S. B., & Siegel, M. H. Swift J0243.6+6124: swift discovery of an accreting NS transient. Astron. Telegr. 10809 (2017).

  11. Jenke, P. & Wilson-Hodge, C. A. Fermi GBM detects pulsations from Swift J0243.6+6124. Astron. Telegr. 10812 (2017).

  12. Doroshenko, V., Tsygankov, S. & Santangelo, A. Orbit and intrinsic spin-up of the newly discovered transient X-ray pulsar Swift J0243.6+6124. Astron. Astrophys. 613, A19 (2018).

    ADS  Google Scholar 

  13. Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

    ADS  Google Scholar 

  14. Gallo, E., Degenaar, N. & van den Eijnden, J. Hard state neutron star and black hole X-ray binaries in the radio: X-ray luminosity plane. Mon. Not. R. Astron. Soc. 478, L132–L136 (2018).

    ADS  CAS  Google Scholar 

  15. Fender, R. P., Belloni, T. M. & Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004).

    ADS  CAS  Google Scholar 

  16. Kosec, P. et al. Evidence for a variable ultrafast outflow in the newly discovered ultraluminous pulsar NGC 300 ULX-1. Mon. Not. R. Astron. Soc. 479, 3978–3986 (2018).

    ADS  CAS  Google Scholar 

  17. Duldig, M. L. et al. Radio identifications of 11 X-ray sources at 2 CM. Mon. Not. R. Astron. Soc. 187, 567–580 (1979).

    ADS  Google Scholar 

  18. Nelson, R. F. & Spencer, R. E. A search for radio emission from X-ray binaries and related objects. Mon. Not. R. Astron. Soc. 234, 1105–1118 (1988).

    ADS  Google Scholar 

  19. Kato, Y., Mineshige, S. & Shibata, K. Magnetohydrodynamic accretion flows: formation of magnetic tower jet and subsequent quasi-steady state. Astrophys. J. 605, 307–320 (2004).

    ADS  Google Scholar 

  20. Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982).

    ADS  MATH  Google Scholar 

  21. Parfrey, K., Spitkovsky, A. & Beloborodov, A. M. Torque enhancement, spin equilibrium, and jet power from disk-induced opening of pulsar magnetic fields. Astrophys. J. 822, 33 (2016).

    ADS  Google Scholar 

  22. Gandhi, P. et al. An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system. Nat. Astron. 1, 859–864 (2017).

    ADS  Google Scholar 

  23. Mushtukov, A. A., Suleimanov, V. F., Tsygankov, S. S. & Ingram, A. Optically thick envelopes around ULXs powered by accreting neutron stars. Mon. Not. R. Astron. Soc. 467, 1202–1208 (2017).

    ADS  CAS  Google Scholar 

  24. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    ADS  Google Scholar 

  25. Parfrey, K. & Tchekhovskoy, A. General-relativistic simulations of four states of accretion onto millisecond pulsars. Astrophys. J. 851, L34 (2017).

    ADS  Google Scholar 

  26. Patruno, A., Haskell, B. & Andersson, N. The spin distribution of fast-spinning neutron stars in low-mass X-Ray binaries: evidence for two subpopulations. Astrophys. J. 850, 106 (2017).

    ADS  Google Scholar 

  27. Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).

    ADS  CAS  Google Scholar 

  28. King, A. & Lasota, J.-P. ULXs: neutron stars versus black holes. Mon. Not. R. Astron. Soc. 458, L10–L13 (2016).

    ADS  CAS  Google Scholar 

  29. Walton, D. J. et al. Evidence for pulsar-like emission components in the broadband ULX sample. Astrophys. J. 856, 128 (2018).

    ADS  Google Scholar 

  30. Tsygankov, S. S., Doroshenko, V., Lutovinov, A. A., Mushtukov, A. A. & Poutanen, J. SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field. Astron. Astrophys. 605, A39 (2017).

    ADS  Google Scholar 

  31. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).

  32. Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS  CAS  Google Scholar 

  33. Matsuoka, M. et al. The MAXI mission on the ISS: science and instruments for monitoring all-sky X-ray images. Publ. Astron. Soc. Jpn 61, 999–1010 (2009).

    ADS  CAS  Google Scholar 

  34. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    ADS  CAS  Google Scholar 

  35. Arnaud, K. A. XSPEC: the first ten years. ASP Conf. Ser. 101, 17–20 (1996).

  36. Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    ADS  CAS  Google Scholar 

  37. Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487–498 (1996).

    ADS  CAS  Google Scholar 

  38. Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  39. Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  40. Bailer-Jones, C. A. L. Estimating distances from parallaxes. Publ. Astron. Soc. Pacif. 127, 994 (2015).

    ADS  Google Scholar 

  41. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distances from parallaxes IV: distances to 1.33 billion stars in Gaia Data Release 2. Astronom. J. 156, 58 (2018).

    ADS  Google Scholar 

  42. Lindegren, L. et al. Gaia Data Release 2: the astrometric solution. Astron. Astrophys. 616, A2 (2018).

    Google Scholar 

  43. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

    ADS  Google Scholar 

  44. Pringle, J. E. & Rees, M. J. Accretion disc models for compact X-ray sources. Astron. Astrophys. 21, 1–9 (1972).

    ADS  Google Scholar 

  45. Ibragimov, A. & Poutanen, J. Accreting millisecond pulsar SAX J1808.4-3658 during its 2002 outburst: evidence for a receding disc. Mon. Not. R. Astron. Soc. 400, 492–508 (2009).

    ADS  Google Scholar 

  46. Cackett, E. M. et al. Broad relativistic iron emission line observed in SAX J1808.4-3658. Astrophys. J. 694, L21–L25 (2009).

    ADS  CAS  Google Scholar 

  47. Long, M., Romanova, M. M. & Lovelace, R. V. E. Locking of the rotation of disk-accreting magnetized stars. Astrophys. J. 634, 1214–1222 (2005).

    ADS  CAS  Google Scholar 

  48. Miller-Jones, J. C. A. et al. Evolution of the radio–X-ray coupling throughout an entire outburst of Aquila X-1. Astrophys. J. 716, L109–L114 (2010).

    ADS  Google Scholar 

  49. Gusinskaia, N. V. et al. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058. Mon. Not. R. Astron. Soc. 470, 1871–1880 (2017).

    ADS  CAS  Google Scholar 

  50. Espinasse, M. & Fender, R. P. Spectral differences between the jets in ‘radio-loud’ and ‘radio-quiet’ hard-state black hole binaries. Mon. Not. R. Astron. Soc. 473, 4122–4129 (2018).

    ADS  CAS  Google Scholar 

  51. Corbel, S. et al. The ‘universal’ radio/X-ray flux correlation: the case study of the black hole GX 339-4. Mon. Not. R. Astron. Soc. 428, 2500–2515 (2013).

    ADS  Google Scholar 

  52. Wright, A. E. & Barlow, M. J. The radio and infrared spectrum of early-type stars undergoing mass loss. Mon. Not. R. Astron. Soc. 170, 41–51 (1975).

    ADS  Google Scholar 

  53. Körding, E. et al. A transient radio jet in an erupting dwarf nova. Science 320, 1318–1320 (2008).

    ADS  Google Scholar 

  54. Snow, T. P. Jr. Stellar winds and mass-loss rates from Be stars. Astrophys. J. 251, 139–151 (1981).

    ADS  CAS  Google Scholar 

  55. Illarionov, A. F. & Sunyaev, R. A. Why the number of galactic X-ray stars is so small? Astron. Astrophys. 39, 185–195 (1975).

    ADS  Google Scholar 

  56. Campana, S. The quiescent X-ray emission of three transient X-ray pulsars. Astrophys. J. 580, 389–393 (2002).

    ADS  Google Scholar 

  57. Tsygankov, S. S. et al. Propeller effect in two brightest transient X-ray pulsars: 4U 0115+63 and V 0332+53. Astron. Astrophys. 593, A16 (2016).

    Google Scholar 

  58. Bates, S. D., Lorimer, D. R. & Verbiest, J. P. W. The pulsar spectral index distribution. Mon. Not. R. Astron. Soc. 431, 1352–1358 (2013).

    ADS  Google Scholar 

  59. The Astropy Collaboration et al. The Astropy Project: building an inclusive, open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

Download references

Acknowledgements

We thank the VLA for rapidly accepting our proposal and performing the Director’s Discretionary Time (DDT) radio observations, and E. Gallo for providing the black hole sample used in Fig. 3. J.v.d.E., N.D. and J.V.H.S. appreciate support from a Netherlands Organisation for Scientific Research (NWO) Vidi grant awarded to N.D. T.D.R. is supported by an NWO Veni grant. R.W. is supported by an NWO Top grant. J.C.A.M.-J. is supported by an Australian Research Council Future Fellowship (FT140101082). G.R.S. acknowledges support from an NSERC Discovery grant. This work used data supplied by the UK Swift Science Data Centre at the University of Leicester. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work used data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by the national institutions participating in the Gaia Multilateral Agreement.

Reviewer information

Nature thanks R. Fender and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.v.d.E. led the two VLA DDT observing campaigns, performed the analysis of the Swift data and wrote the manuscript, with comments from all authors. J.v.d.E., N.D. and T.D.R. designed the radio monitoring strategy. T.D.R. and J.v.d.E. jointly analysed the VLA radio data. J.V.H.S. calculated the Gaia DR2 distance estimate. All authors made contributions to the scientific case and commented on multiple versions of the manuscript.

Corresponding author

Correspondence to J. van den Eijnden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Marginal posterior distributions for the distance to Sw J0243.

We show the distribution for an exponential and a uniform prior. The median value (50th percentile) of the distribution for the exponential prior is shown as the dot-dashed line. L is the scale parameter of the exponential prior and rlim is the maximum distance in the uniform prior. PDF, probability density function.

Extended Data Table 1 Overview of VLA radio observations of Sw J0243
Extended Data Table 2 VLA radio flux density, polarization and position measurements
Extended Data Table 3 Swift-XRT flux measurements
Extended Data Table 4 Swift-XRT spectral fit parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Eijnden, J., Degenaar, N., Russell, T.D. et al. An evolving jet from a strongly magnetized accreting X-ray pulsar. Nature 562, 233–235 (2018). https://doi.org/10.1038/s41586-018-0524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0524-1

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing