Letter | Published:

An evolving jet from a strongly magnetized accreting X-ray pulsar

Naturevolume 562pages233235 (2018) | Download Citation

Abstract

Relativistic jets are observed throughout the Universe and strongly affect their surrounding environments on a range of physical scales, from Galactic binary systems1 to galaxies and clusters of galaxies2. All types of accreting black hole and neutron star have been observed to launch jets3, with the exception of neutron stars with strong magnetic fields4,5 (higher than 1012 gauss), leading to the conclusion that their magnetic field strength inhibits jet formation6. However, radio emission recently detected from two such objects could have a jet origin, among other possible explanations7,8, indicating that this long-standing idea might need to be reconsidered. But definitive observational evidence of such jets is still lacking. Here we report observations of an evolving jet launched by a strongly magnetized neutron star accreting above the theoretical maximum rate given by the Eddington limit. The radio luminosity of the jet is two orders of magnitude fainter than those seen in other neutron stars with similar X-ray luminosities9, implying an important role for the properties of the neutron star in regulating jet power. Our result also shows that the strong magnetic fields of ultra-luminous X-ray pulsars do not prevent such sources from launching jets.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The VLA observations analysed in this work will become publicly available in the NRAO Science Data Archive (https://archive.nrao.edu/archive/advquery.jsp) on 8 November 2018 (first two epochs) and 20 February 2019 (remaining epochs), under project codes 17B-406 and 17B-420, respectively. However, prior access to the VLA observations will be granted by the corresponding author upon reasonable request. All Swift X-ray data are accessible in the HEASARC data archive. The radio–X-ray correlation data sample is available online at https://github.com/jvandeneijnden/XRB-Lx-Lr-Sample.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Gallo, E. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005).

  2. 2.

    Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

  3. 3.

    Fender, R. Disc-jet-wind coupling in black hole binaries, and other stories. Astron. Nachr. 337, 381–384 (2016).

  4. 4.

    Fender, R. P. & Hendry, M. A. The radio luminosity of persistent X-ray binaries. Mon. Not. R. Astron. Soc. 317, 1–8 (2000).

  5. 5.

    Migliari, S., Ghisellini, G., Miller-Jones, J. & Russell, D. Jet models for neutron star X-ray binaries. Int. J. Mod. Phys. 8, 108–113 (2012).

  6. 6.

    Massi, M. & Kaufman Bernadó, M. Magnetic field upper limits for jet formation. Astron. Astrophys. 477, 1–7 (2008).

  7. 7.

    van den Eijnden, J. et al. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star? Mon. Not. R. Astron. Soc. 473, L141–L145 (2018).

  8. 8.

    van den Eijnden, J. et al. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4. Mon. Not. R. Astron. Soc. 474, L91–L95 (2018).

  9. 9.

    Migliari, S. & Fender, R. P. Jets in neutron star X-ray binaries: a comparison with black holes. Mon. Not. R. Astron. Soc. 366, 79–91 (2006).

  10. 10.

    Kennea, J. A., Lien, A. Y., Krimm, H. A., Cenko, S. B., & Siegel, M. H. Swift J0243.6+6124: swift discovery of an accreting NS transient. Astron. Telegr. 10809 (2017).

  11. 11.

    Jenke, P. & Wilson-Hodge, C. A. Fermi GBM detects pulsations from Swift J0243.6+6124. Astron. Telegr. 10812 (2017).

  12. 12.

    Doroshenko, V., Tsygankov, S. & Santangelo, A. Orbit and intrinsic spin-up of the newly discovered transient X-ray pulsar Swift J0243.6+6124. Astron. Astrophys. 613, A19 (2018).

  13. 13.

    Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

  14. 14.

    Gallo, E., Degenaar, N. & van den Eijnden, J. Hard state neutron star and black hole X-ray binaries in the radio: X-ray luminosity plane. Mon. Not. R. Astron. Soc. 478, L132–L136 (2018).

  15. 15.

    Fender, R. P., Belloni, T. M. & Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004).

  16. 16.

    Kosec, P. et al. Evidence for a variable ultrafast outflow in the newly discovered ultraluminous pulsar NGC 300 ULX-1. Mon. Not. R. Astron. Soc. 479, 3978–3986 (2018).

  17. 17.

    Duldig, M. L. et al. Radio identifications of 11 X-ray sources at 2 CM. Mon. Not. R. Astron. Soc. 187, 567–580 (1979).

  18. 18.

    Nelson, R. F. & Spencer, R. E. A search for radio emission from X-ray binaries and related objects. Mon. Not. R. Astron. Soc. 234, 1105–1118 (1988).

  19. 19.

    Kato, Y., Mineshige, S. & Shibata, K. Magnetohydrodynamic accretion flows: formation of magnetic tower jet and subsequent quasi-steady state. Astrophys. J. 605, 307–320 (2004).

  20. 20.

    Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982).

  21. 21.

    Parfrey, K., Spitkovsky, A. & Beloborodov, A. M. Torque enhancement, spin equilibrium, and jet power from disk-induced opening of pulsar magnetic fields. Astrophys. J. 822, 33 (2016).

  22. 22.

    Gandhi, P. et al. An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system. Nat. Astron. 1, 859–864 (2017).

  23. 23.

    Mushtukov, A. A., Suleimanov, V. F., Tsygankov, S. S. & Ingram, A. Optically thick envelopes around ULXs powered by accreting neutron stars. Mon. Not. R. Astron. Soc. 467, 1202–1208 (2017).

  24. 24.

    Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

  25. 25.

    Parfrey, K. & Tchekhovskoy, A. General-relativistic simulations of four states of accretion onto millisecond pulsars. Astrophys. J. 851, L34 (2017).

  26. 26.

    Patruno, A., Haskell, B. & Andersson, N. The spin distribution of fast-spinning neutron stars in low-mass X-Ray binaries: evidence for two subpopulations. Astrophys. J. 850, 106 (2017).

  27. 27.

    Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).

  28. 28.

    King, A. & Lasota, J.-P. ULXs: neutron stars versus black holes. Mon. Not. R. Astron. Soc. 458, L10–L13 (2016).

  29. 29.

    Walton, D. J. et al. Evidence for pulsar-like emission components in the broadband ULX sample. Astrophys. J. 856, 128 (2018).

  30. 30.

    Tsygankov, S. S., Doroshenko, V., Lutovinov, A. A., Mushtukov, A. A. & Poutanen, J. SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field. Astron. Astrophys. 605, A39 (2017).

  31. 31.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).

  32. 32.

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

  33. 33.

    Matsuoka, M. et al. The MAXI mission on the ISS: science and instruments for monitoring all-sky X-ray images. Publ. Astron. Soc. Jpn 61, 999–1010 (2009).

  34. 34.

    Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

  35. 35.

    Arnaud, K. A. XSPEC: the first ten years. ASP Conf. Ser. 101, 17–20 (1996).

  36. 36.

    Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

  37. 37.

    Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487–498 (1996).

  38. 38.

    Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  39. 39.

    Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  40. 40.

    Bailer-Jones, C. A. L. Estimating distances from parallaxes. Publ. Astron. Soc. Pacif. 127, 994 (2015).

  41. 41.

    Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distances from parallaxes IV: distances to 1.33 billion stars in Gaia Data Release 2. Astronom. J. 156, 58 (2018).

  42. 42.

    Lindegren, L. et al. Gaia Data Release 2: the astrometric solution. Astron. Astrophys. 616, A2 (2018).

  43. 43.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

  44. 44.

    Pringle, J. E. & Rees, M. J. Accretion disc models for compact X-ray sources. Astron. Astrophys. 21, 1–9 (1972).

  45. 45.

    Ibragimov, A. & Poutanen, J. Accreting millisecond pulsar SAX J1808.4-3658 during its 2002 outburst: evidence for a receding disc. Mon. Not. R. Astron. Soc. 400, 492–508 (2009).

  46. 46.

    Cackett, E. M. et al. Broad relativistic iron emission line observed in SAX J1808.4-3658. Astrophys. J. 694, L21–L25 (2009).

  47. 47.

    Long, M., Romanova, M. M. & Lovelace, R. V. E. Locking of the rotation of disk-accreting magnetized stars. Astrophys. J. 634, 1214–1222 (2005).

  48. 48.

    Miller-Jones, J. C. A. et al. Evolution of the radio–X-ray coupling throughout an entire outburst of Aquila X-1. Astrophys. J. 716, L109–L114 (2010).

  49. 49.

    Gusinskaia, N. V. et al. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058. Mon. Not. R. Astron. Soc. 470, 1871–1880 (2017).

  50. 50.

    Espinasse, M. & Fender, R. P. Spectral differences between the jets in ‘radio-loud’ and ‘radio-quiet’ hard-state black hole binaries. Mon. Not. R. Astron. Soc. 473, 4122–4129 (2018).

  51. 51.

    Corbel, S. et al. The ‘universal’ radio/X-ray flux correlation: the case study of the black hole GX 339-4. Mon. Not. R. Astron. Soc. 428, 2500–2515 (2013).

  52. 52.

    Wright, A. E. & Barlow, M. J. The radio and infrared spectrum of early-type stars undergoing mass loss. Mon. Not. R. Astron. Soc. 170, 41–51 (1975).

  53. 53.

    Körding, E. et al. A transient radio jet in an erupting dwarf nova. Science 320, 1318–1320 (2008).

  54. 54.

    Snow, T. P. Jr. Stellar winds and mass-loss rates from Be stars. Astrophys. J. 251, 139–151 (1981).

  55. 55.

    Illarionov, A. F. & Sunyaev, R. A. Why the number of galactic X-ray stars is so small? Astron. Astrophys. 39, 185–195 (1975).

  56. 56.

    Campana, S. The quiescent X-ray emission of three transient X-ray pulsars. Astrophys. J. 580, 389–393 (2002).

  57. 57.

    Tsygankov, S. S. et al. Propeller effect in two brightest transient X-ray pulsars: 4U 0115+63 and V 0332+53. Astron. Astrophys. 593, A16 (2016).

  58. 58.

    Bates, S. D., Lorimer, D. R. & Verbiest, J. P. W. The pulsar spectral index distribution. Mon. Not. R. Astron. Soc. 431, 1352–1358 (2013).

  59. 59.

    The Astropy Collaboration et al. The Astropy Project: building an inclusive, open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

Download references

Acknowledgements

We thank the VLA for rapidly accepting our proposal and performing the Director’s Discretionary Time (DDT) radio observations, and E. Gallo for providing the black hole sample used in Fig. 3. J.v.d.E., N.D. and J.V.H.S. appreciate support from a Netherlands Organisation for Scientific Research (NWO) Vidi grant awarded to N.D. T.D.R. is supported by an NWO Veni grant. R.W. is supported by an NWO Top grant. J.C.A.M.-J. is supported by an Australian Research Council Future Fellowship (FT140101082). G.R.S. acknowledges support from an NSERC Discovery grant. This work used data supplied by the UK Swift Science Data Centre at the University of Leicester. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work used data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by the national institutions participating in the Gaia Multilateral Agreement.

Reviewer information

Nature thanks R. Fender and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands

    • J. van den Eijnden
    • , N. Degenaar
    • , T. D. Russell
    • , R. Wijnands
    •  & J. V. Hernández Santisteban
  2. International Centre for Radio Astronomy Research–Curtin University, Perth, Western Australia, Australia

    • J. C. A. Miller-Jones
  3. Department of Physics, University of Alberta, Edmonton, Alberta, Canada

    • G. R. Sivakoff

Authors

  1. Search for J. van den Eijnden in:

  2. Search for N. Degenaar in:

  3. Search for T. D. Russell in:

  4. Search for R. Wijnands in:

  5. Search for J. C. A. Miller-Jones in:

  6. Search for G. R. Sivakoff in:

  7. Search for J. V. Hernández Santisteban in:

Contributions

J.v.d.E. led the two VLA DDT observing campaigns, performed the analysis of the Swift data and wrote the manuscript, with comments from all authors. J.v.d.E., N.D. and T.D.R. designed the radio monitoring strategy. T.D.R. and J.v.d.E. jointly analysed the VLA radio data. J.V.H.S. calculated the Gaia DR2 distance estimate. All authors made contributions to the scientific case and commented on multiple versions of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. van den Eijnden.

Extended data figures and tables

  1. Extended Data Fig. 1 Marginal posterior distributions for the distance to Sw J0243.

    We show the distribution for an exponential and a uniform prior. The median value (50th percentile) of the distribution for the exponential prior is shown as the dot-dashed line. L is the scale parameter of the exponential prior and rlim is the maximum distance in the uniform prior. PDF, probability density function.

  2. Extended Data Table 1 Overview of VLA radio observations of Sw J0243
  3. Extended Data Table 2 VLA radio flux density, polarization and position measurements
  4. Extended Data Table 3 Swift-XRT flux measurements
  5. Extended Data Table 4 Swift-XRT spectral fit parameters

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0524-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.