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            Abstract
Sounds can arise from the environment and also predictably from many of our own movements, such as vocalizing, walking, or playing music. The capacity to anticipate these movement-related (reafferent) sounds and distinguish them from environmental sounds is essential for normal hearing1,2, but the neural circuits that learn to anticipate the often arbitrary and changeable sounds that result from our movements remain largely unknown. Here we developed an acoustic virtual reality (aVR) system in which a mouse learned to associate a novel sound with its locomotor movements, allowing us to identify the neural circuit mechanisms that learn to suppress reafferent sounds and to probe the behavioural consequences of this predictable sensorimotor experience. We found that aVR experience gradually and selectively suppressed auditory cortical responses to the reafferent frequency, in part by strengthening motor cortical activation of auditory cortical inhibitory neurons that respond to the reafferent tone. This plasticity is behaviourally adaptive, as aVR-experienced mice showed an enhanced ability to detect non-reafferent tones during movement. Together, these findings describe a dynamic sensory filter that involves motor cortical inputs to the auditory cortex that can be shaped by experience to selectively suppress the predictable acoustic consequences of movement.




            
                
                    

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



                
            


            
                
                    
                

            

            
                
                
                
                
                    
                        This is a preview of subscription content, access via your institution

                    

                    
                

                

                Access options

                


                
                    
                        
                            

    
        
            
                
                Access through your institution
            
        

        
    



                        

                        

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



                    
                

                
    
    Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time

Learn more



Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue

Learn more



Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Learn more



Prices may be subject to local taxes which are calculated during checkout



  

    
    
        
    Additional access options:

    	
            Log in
        
	
            Learn about institutional subscriptions
        
	
            Read our FAQs
        
	
            Contact customer support
        



    

                
                    Fig. 1: Locomotion-related suppression is specific for the frequency of self-generated sounds.


Fig. 2: Reafferent suppression arises in parallel with sensoryâ€“motor experience.


Fig. 3: Reafferent-tuned inhibitory neurons increase their activity during locomotion and receive enhanced motor cortical input.


Fig. 4: Tone detection behaviour is compromised by locomotion, is auditory-cortex dependent, and adapts following aVR experience.
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Extended data figures and tables

Extended Data Fig. 1 aVR experience is coupled to locomotion.
a, Heat map showing the rate of tone presentation as a function of instantaneous stepping rate with a single paw, measured via simultaneous videography. Data points show meanâ€‰Â±â€‰s.d. tone rate and stepping rate in 1-Hz (1Â sâ€“1) bins. Red dashed line shows linear regression through all data points. Reafferent tones during aVR experience were strongly correlated to instantaneous paw stepping rate (0.78). Data are from 3,716 steps recorded from 1,804Â s of video from two mice. b, Average tone presentation rate during aVR experience closely matches average stepping rate measured either with a single paw or two paws. Dots are median and error bars are s.d. c, Cumulative distance run by 11 mice over 6â€“9Â days of aVR experience. Each line is for a different mouse, colour-coded by the reafferent frequency to which the mouse was acclimated. d, Cumulative number of tones heard by same 11 mice as in c.


Extended Data Fig. 2 aVR experience alters locomotion-related suppression at the level of individual neurons.
a, Fraction of neurons with elevated firing rates (magenta) and suppressed firing rates (cyan) in response to tones during rest. A roughly equal number of neurons were excited by the reafferent frequency as were excited by other frequencies. b, Fraction of rest-responsive neurons with elevated firing rates (magenta) and suppressed firing rates (cyan) in response to tones of varying frequency during running. Nearly 50% of neurons were responsive to non-reafferent frequencies during running, whereas fewer than 25% were responsive to the reafferent frequency. c, Heat map showing response strength (tone-evoked rate â€“ baseline rate) for neurons responsive to the expected reafferent frequency (left, nâ€‰=â€‰114 neurons, Nâ€‰=â€‰11 mice) and another frequency (+2 octaves, nâ€‰=â€‰120 neurons, Nâ€‰=â€‰11 mice) during rest. Neurons ordered by magnitude of response independently for each heat map. d, Response strengths of the neurons in c during running. Neurons are re-sorted by magnitude of response. Twenty-three per cent of neurons retained their response to the reafferent frequency during running, consistent with a sparse representation of expected reafferent sounds. e, Two alternative models for how locomotion-related suppression could change following aVR experience. In each model, the black curves show frequency tuning curves of three neurons during rest, red curves during running, and the green dashed line indicates the reafferent frequency. Across-neuron model: locomotion-related suppression is uniform across frequencies within a neuron but is strongest for neurons that are strongly responsive to the expected reafferent frequency. Within-neuron model: suppression is non-uniform at the single neuron level and regardless of how strongly the neuron responds to the expected reafferent frequency, suppression is always strongest at the reafferent frequency. f, Tuning curves for five example neurons measured during rest (black) and running (red). The best frequency (BF) for each neuron is shown by the blue triangle, and the reafferent frequency to which each mouse was acclimated is shown by the green dashed line. In all five neurons, locomotion-related suppression was strong at the reafferent frequency relative to other frequencies, regardless of the neuronâ€™s best frequency. g, Neurons were sorted by their best frequency, measured relative to the reafferent frequency that each mouse experienced. Locomotion-related suppression at the expected reafferent frequency (green) and averaged across all non-reafferent frequencies (black). Regardless of a neuronâ€™s best frequency, suppression was always strongest at the reafferent frequency, supporting the within-neuron model in e. Sample size: Nâ€‰=â€‰11 mice, nâ€‰=â€‰314 neurons. Shaded regions show 95% confidence bounds estimated with a bootstrap analysis repeated 1,000 times. h, Probability of observing a minima in the gain function of individual neurons at each frequency, measured relative to the reafferent frequency. A substantial number of neurons had minima in their gain functions at the expected reafferent frequency, further supporting the within-neuron model in e. Sample size: Nâ€‰=â€‰11 mice, nâ€‰=â€‰314 neurons. Shaded region shows a null distribution, which we estimated by randomly assigning to each neuron a reafferent frequency rather than using the actual frequency experienced by the mouse from which the neuron was recorded. This shuffling was performed 1,000 times and the 95% confidence bounds of the distribution were computed. Error bars show the 95% confidence bounds estimated from a bootstrap analysis repeated 1,000 times.


Extended Data Fig. 3 Specificity of suppression following aVR experience.
a, Locomotion-related gain tested at half-octave spacing from the reafferent frequency. Neuronal responses to frequencies half an octave from the reafferent frequency were suppressed at an intermediate level. Data are meanâ€‰Â±â€‰s.e. Sample size: Nâ€‰=â€‰4 mice, nâ€‰=â€‰106 neurons. b, Example current-source density triggered by tone-onset for electrode recordings made perpendicular to the auditory cortical surface. Black dashed line demarcates putative supragranular (SG) and infragranular (IG) layers of cortex. Electrode 1 is the most superficial; electrode spacing is 100Â Î¼m. c, Example tone-evoked local field potential (LFP) traces from an SG electrode (left) and an IG electrode (right) in response to the expected reafferent frequency (left) and a non-reafferent frequency (right). Locomotion-related suppression of LFP responses was stronger for the reafferent frequency than for non-reafferent frequencies. Data are meanâ€‰Â±â€‰s.e. d, The difference in LFP between rest and running as a function of electrode location (1 is the most superficial; electrode spacing is 100Â Î¼m; Nâ€‰=â€‰3 mice). Positive values indicate greater suppression during locomotion.


Extended Data Fig. 4 Frequency-specific locomotion-related suppression requires several days of coupled sensoryâ€“motor experience.
a, Example sensoryâ€“motor experience during anti-coupled aVR experience. Mice did not hear tones while running, but tones were played back during subsequent resting periods with inter-tone intervals drawn from the intervals that mice should have heard while running. b, Population PSTHs for the expected frequency (left) and for non-reafferent frequencies (right) during rest (black) and running (red) following anti-coupled aVR. Anti-coupled aVR experience does not lead to changes in auditory responsiveness during running or rest. Sample size: Nâ€‰=â€‰4 mice, nâ€‰=â€‰97 neurons. Shaded region shows meanâ€‰Â±â€‰s.e. Pâ€‰=â€‰0.57, two-sided Wilcoxon rank sum test. c, Example sensoryâ€“motor experience during metronome aVR experience. Tones were presented during running at a fixed rate (2Â sâ€“1) but the tone rate was not modulated by running speed. d, Population PSTHs for the expected frequency (left) and for non-reafferent frequencies (right) during rest (black) and running (red) following metronome aVR. Metronome aVR experience does not lead to changes in auditory responsiveness during running or rest. Sample size: Nâ€‰=â€‰2 mice, nâ€‰=â€‰49 neurons. Shaded region shows meanâ€‰Â±â€‰s.e. Pâ€‰=â€‰0.57, two-sided Wilcoxon rank sum test. e, Mice were acclimated to aVR for 7Â days. On the day of electrophysiology, we altered on each locomotor bout the sound produced by the treadmill to be either expected (blue) or a non-reafferent frequency (2 octaves away, red). We then analysed responses (Nâ€‰=â€‰4 mice, nâ€‰=â€‰74 neurons) to each sound frequency during rest (R) and to the first five tones heard at the beginning of each bout of locomotion (L1â€“L5). (i) Tone-evoked responses (population PSTHs) to the reafferent (blue) and a non-reafferent sound (red) during rest. (ii) Tone-evoked responses during locomotion to the first five tones in a series of the expected reafferent frequency. (iii) Tone-evoked responses during locomotion to the first five tones heard in a series of non-reafferent tones. f, Firing rates to the reafferent (blue) and non-reafferent (red) reafferent sounds during rest (R) and during the first five tones heard during locomotion (L1â€“L5). Responses to the first tone heard during locomotion were significantly suppressed only if that tone matched the expected reafferent frequency (blue asterisk, Pâ€‰=â€‰0.002, two-sided Wilcoxon signed rank test). Black asterisks indicate significant differences between firing rates to the reafferent and non-reafferent reafferent sounds (L1, Pâ€‰=â€‰0.002; L2, Pâ€‰=â€‰0.03; L3, Pâ€‰=â€‰0.007, two-sided Wilcoxon rank sum test). Sample size: Nâ€‰=â€‰4 mice, nâ€‰=â€‰74 neurons. Red n.s. indicates that evoked responses to the first tone heard during a bout of running are not significantly different from those evoked during rest for non-reafferent tones (Pâ€‰=â€‰0.4, two-sided Wilcoxon signed rank test). g, Population PSTHs for the expected frequency (left) and for non-reafferent frequencies (right) during rest (black) and running (red). Data were collected from three mice (nâ€‰=â€‰67 neurons) after each mouseâ€™s first experience of hearing fixed-frequency reafferent tones for 1Â h, during which time mice heard 927, 3,167 and 1,069 reafferent tones at 16Â kHz, 2Â kHz and 16Â kHz, respectively. This experience was insufficient to shift the locomotion-related suppression towards the reafferent frequency. Shaded region shows meanâ€‰Â±â€‰s.e. Pâ€‰=â€‰0.47, two-sided Wilcoxon rank sum test.


Extended Data Fig. 5 Characterizing photo-identified inhibitory neurons in auditory cortex.
a, Voltage trace of a pi-IN recorded from a VGAT::ChR2 mouse in response to a 100-ms pulse of blue light targeted to the cortical surface. Inset shows example waveforms belonging to the sorted unit (black) and belonging to the noise cluster (magenta), showing good electrophysiological isolation. b, Rasters showing response of the same neuron to 30 pulses of blue light (100Â ms each). c, Tone-evoked responses of auditory cortical inhibitory neurons (VGAT+) during rest (black) and locomotion (red) in response to reafferent (left) and non-reafferent (right) frequencies. Responses are suppressed during locomotion, but suppression is not specific to the reafferent frequency. Sample size: Nâ€‰=â€‰5 mice, nâ€‰=â€‰71 neurons. Shaded region shows meanâ€‰Â±â€‰s.e. Pâ€‰=â€‰0.36, two-sided Wilcoxon rank sum test. d, Spontaneous firing rate during rest and locomotion for 93 putative excitatory neurons (non-photo-identified in VGAT::ChR2 mice, Nâ€‰=â€‰7 mice). Filled circle shows mean. Firing rates were significantly lower during running relative to rest (two-sided Wilcoxon signed rank test). e, pi-INs (VGAT+) that were more strongly driven by the reafferent frequency were more strongly recruited during running. Nâ€‰=â€‰2 mice, nâ€‰=â€‰47 neurons. Black line and shaded area show linear regression and 95% confidence bounds from a bootstrap analysis repeated 1,000 times, respectively. The P value represents the probability that the slope of the regression line includes zero, estimated from the bootstrap analysis. f, Tone-evoked responses during running and rest for the reafferent frequency (blue) and non-reafferent frequencies (Â±2 octaves, red). Dots are responses of individual neurons (Nâ€‰=â€‰11 mice, nâ€‰=â€‰317), lines are linear regression, and shaded regions are 95% confidence bounds from bootstrap analysis repeated 1,000 times. Suppression to non-reafferent sounds is best fit as a gain model (slopeâ€‰=â€‰0.47â€‰Â±â€‰0.05; offsetâ€‰=â€‰â€“0.19â€‰Â±â€‰0.70), whereas suppression of expected reafferent tones has a stronger gain component (that is, shallower slope, two-sided Wilcoxon rank sum test, Pâ€‰=â€‰3.3â€‰Ã—â€‰10âˆ’317) and an offset term that is significantly different from zero (slopeâ€‰=â€‰0.27â€‰Â±â€‰0.4; offsetâ€‰=â€‰â€“3.55â€‰Â±â€‰0.58. two-sided signed rank test, Pâ€‰=â€‰3.3â€‰Ã—â€‰10âˆ’165). Inset shows a zoom in of the regression lines near the origin. These data suggest that suppression of expected reafferent sounds involves both divisive and subtractive forms of inhibition. g, Responses to a non-reafferent tone in VGAT+ pi-INs recorded from aVR-acclimated mice were weakly correlated with responses to electrical stimulation in M2 (nâ€‰=â€‰75 neurons from 5 mice). These data indicate that the strong relationship between tone-evoked responses and M2 stimulation responses in auditory cortical pi-INs is distinct to the reafferent frequency. Black line and shaded area show linear regression and 95% confidence bounds from a bootstrap analysis repeated 1,000 times, respectively. h, Responses to the expected reafferent tone in put-ENs recorded from aVR-acclimated mice were correlated with responses to electrical stimulation in M2 (nâ€‰=â€‰181 neurons from 5 VGAT::ChR2 mice). This effect size for put-ENs is significantly weaker than for pi-INs. Black line and shaded area show linear regression and 95% confidence bounds from a bootstrap analysis repeated 1,000 times, respectively. I, Responses to a non-reafferent tone in VGAT+ pi-INs recorded from naive mice were weakly correlated with responses to electrical stimulation in M2 (nâ€‰=â€‰41 neurons from 2 mice). Black line and shaded area show linear regression and 95% confidence bounds from a bootstrap analysis repeated 1,000 times, respectively. j, Slope of the linear fit for the relationship shown in Fig.Â 3i. Error bars show 95% confidence bounds from a bootstrap analysis. Data are from regressions shown in Fig.Â 3g and Extended Data Fig.Â 5gâ€“i. Slopes of linear fit for PV, VGAT, SST, and all pi-INs are significantly larger than slopes of linear fits for non-reafferent and naive conditions (Pâ€‰<â€‰0.01, Wilcoxon). Bar height determined by linear fit of raw data; error bars show s.e. of linear fits from 1,000 repetitions of bootstrap analysis.


Extended Data Fig. 6 Tone detection behaviour is compromised by locomotion, is auditory-cortex dependent, and adapts following VR experience.
a, Data points show mean and s.e. detection rates for Nâ€‰=â€‰4 mice as a function of tone intensity for trials performed during rest with infusion of either saline (black) or muscimol (magenta) into the auditory cortex. b, Difference in performance as a function of intensity for each mouse (grey dots). Large connected dots show mean difference in performance and coloured dots indicate intensities at which performance was significantly different (Pâ€‰<â€‰0.05) across conditions (Nâ€‰=â€‰19 mice, repeated measures two-way ANOVA followed by post-hoc Tukey test). c, Tone-evoked responses from putative excitatory neurons recorded from VGAT::ChR2 mouse without (black) and with (blue) simultaneous blue laser stimulation. Optogenetic activation of inhibitory neurons decreases the spontaneous and tone-evoked firing rates of excitatory neurons. nâ€‰=â€‰23 neurons, Nâ€‰=â€‰1 mouse. d, Tone-evoked firing rates during rest are weaker during optogenetic activation of inhibitory interneurons. Dashed line is unity. (nâ€‰=â€‰23 neurons, Nâ€‰=â€‰1 mouse; Pâ€‰<â€‰0.05, two-sided paired t-test.) e, Tone detection performance (Nâ€‰=â€‰6 mice) during rest (black) and rest with optogenetic activation of auditory cortical inhibitory neurons (blue). Mice were worse at detecting tones on optogenetic trials (repeated measures two-way ANOVA, factors: intensityâ€‰Ã—â€‰laser state, P(intensityâ€‰Ã—â€‰laser state)â€‰=â€‰0.0028, F(2, 10)â€‰=â€‰11.23, post-hoc Tukey test at individual intensities, blue asterisk, Pâ€‰<â€‰0.05 on laser trials) compared to rest. f, Tone detection performance (Nâ€‰=â€‰6 mice) during rest (black) and rest with optogenetic activation of M2 terminals in auditory cortex (blue). Four of these mice were presented with 8-kHz tones and the remaining two were presented with 4-kHz tones. Mice were worse at detecting tones on optogenetic trials regardless of the tone frequency. (Statistics similar to e, P(intensityâ€‰Ã—â€‰laser state)â€‰=â€‰0.01, F(2, 10)â€‰=â€‰6.66, blue asterisk, Pâ€‰<â€‰0.05 on laser trials). g, Average psychometric functions (Nâ€‰=â€‰3 mice) showing detection rates as a function of tone intensity for trials performed during rest when visual cortex was inhibited. (repeated measures two-way ANOVA, P(intensityâ€‰Ã—â€‰laser state)â€‰=â€‰0.33, F(2, 4)â€‰=â€‰1.47). h, Average psychometric functions (Nâ€‰=â€‰2 mice) showing detection rates as a function of tone intensity for trials performed during rest (black) and during rest with laser stimulation (blue) by mice injected with an AAV encoding eGFP in M2. These controls show that laser stimulation of auditory cortex in the absence of ChR2 does not influence behaviour. i, Average psychometric functions (Nâ€‰=â€‰8 mice) showing detection rates as a function of tone intensity for trials performed during rest (black) and during rest with laser stimulation (blue) when the optical fibre was placed over intact skull near, but not directly over auditory cortex. Five of eight mice were injected with an AAV encoding ChR2 into M2, of which three were presented with 8-kHz tones and 2 with 4-kHz tones. The other three were VGAT::ChR2 mice presented with 8-kHz tones. These controls show that sham laser stimulation (which is visible to the mouse) alone improves behaviour (repeated measures two-way ANOVA, factors: intensityâ€‰Ã—â€‰laser state, P(interaction)â€‰=â€‰0.0066, F(2, 14)â€‰=â€‰7.35, post-hoc Tukey tests, blue asterisk, Pâ€‰<â€‰0.05). j, Difference in hit rates in response to tone A relative to tone B during rest before (pre) and after (post) aVR experience with tone A.). Lines represent mean difference and shaded regions show s.e. for Nâ€‰=â€‰10 mice. There is no difference in rest performance before and after aVR experience. (repeated measures two-way ANOVA in each panel, factors: intensityâ€‰Ã—â€‰time of testing, P(time of testing)â€‰=â€‰0.46, F(1, 9)â€‰=â€‰0.61). k, Difference in hit rates in response to tone A relative to tone B during running before (pre) and after (post) aVR experience with tone A. Lines represent mean difference and shaded regions show s.e. for Nâ€‰=â€‰10 mice. Mice are significantly better at detecting tone B than tone A after aVR experience, indicating that this is a movement-specific change (repeated measures two-way ANOVA in each panel, factors: intensityâ€‰Ã—â€‰time of testing, P(time of testing)â€‰=â€‰0.04, F(1, 9)â€‰=â€‰8.07, red asterisk, Pâ€‰<â€‰0.05, p values in j, k corrected using the Holmâ€“Bonferroni method. For further statistical details, see Supplementary TableÂ 1.





Supplementary information
Supplementary Table
This file contains Supplementary Table 1: Summary of measured values and statistics described in Fig. 4 and Extended Data Fig. 6.


Reporting Summary

Video 1: aVR experience.
Mouse running on aVR treadmill producing tones with a fixed frequency (4 kHz) that are yoked to the mouseâ€™s speed.


Video 2: Tone detection behavior.
Mouse performing tone-detection task while resting (trials 1 and 2 in the video) and running (trials 3 and 4 in the video). Red LED indicates each time the lickometer detects a lick. Mouse was performing the single-frequency version of the task. In this example video, all tones were presented at the 60 dB and the mouse correctly detected all of them.
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