Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet

Abstract

Owing to the unusual geometry of kagome lattices—lattices made of corner-sharing triangles—their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states1,2,3,4,5,6,7,8,9. In the presence of strong spin–orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin–orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin–orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity—a clear indication of electron correlation—and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin–orbit properties and exploring emergent phenomena in topological or quantum materials10,11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface identification at the atomic scale.
Fig. 2: Vector-magnetization-induced giant and nematic energy shift.
Fig. 3: Vector-magnetization-governed electronic symmetry.
Fig. 4: Correspondence between vector-magnetization-based energy shift and broken symmetry.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Mekata, M. Kagome: the story of the basketweave lattice. Phys. Today 56, 12 (2003).

    Article  Google Scholar 

  2. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  3. Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S=1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    Article  ADS  CAS  Google Scholar 

  5. Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    Article  ADS  CAS  Google Scholar 

  6. Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).

    Article  CAS  Google Scholar 

  7. Chisnell, R. et al. Topological magnon bands in a kagome lattice ferromagnet. Phys. Rev. Lett. 115, 147201 (2015).

    Article  ADS  CAS  Google Scholar 

  8. Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    Article  ADS  Google Scholar 

  9. Zhu, W., Gong, S.-S., Zeng, T.-S., Fu, L. & Sheng, D. S. Interaction-driven spontaneous quantum Hall effect on a kagome lattice. Phys. Rev. Lett. 117, 096402 (2016).

    Article  ADS  CAS  Google Scholar 

  10. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  CAS  Google Scholar 

  11. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  CAS  Google Scholar 

  12. Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article  CAS  Google Scholar 

  13. Kida, T. et al. The giant anomalous Hall effect in the ferromagnet Fe3Sn2 – a frustrated kagome metal. J. Phys. Condens. Matter 23, 112205 (2011).

    Article  ADS  CAS  Google Scholar 

  14. Wang, Q., Sun, S., Zhang, X., Pang, F. & Lei, H. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer kagome lattice. Phys. Rev. B 94, 075135 (2016).

    Article  ADS  Google Scholar 

  15. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  CAS  Google Scholar 

  16. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article  ADS  Google Scholar 

  17. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  ADS  CAS  Google Scholar 

  18. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Fenner, L. A., Dee, A. A. & Wills, A. S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2. J. Phys. Condens. Matter 21, 452202 (2009).

    Article  ADS  CAS  Google Scholar 

  20. Hou, Z. et al. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. Adv. Mater. 29, 1701144 (2017).

    Article  Google Scholar 

  21. Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    Article  ADS  CAS  Google Scholar 

  22. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science 315, 214–217 (2007).

    Article  ADS  CAS  Google Scholar 

  23. Chuang, T. M. et al. Nematic electronic structure in the “parent” state of the iron-based superconductor Ca(Fe1-xCox)2As2. Science 327, 181–184 (2010).

    Article  ADS  CAS  Google Scholar 

  24. Fujita, K. et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014).

    Article  ADS  CAS  Google Scholar 

  25. Bode, M. et al. Magnetization-direction-dependent local electronic structure probed by scanning tunneling spectroscopy. Phys. Rev. Lett. 89, 237205 (2002).

    Article  ADS  CAS  Google Scholar 

  26. Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

    Article  ADS  CAS  Google Scholar 

  27. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  CAS  Google Scholar 

  28. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  CAS  Google Scholar 

  29. Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    Article  ADS  Google Scholar 

  30. Nishimoto, S. et al. Metal-insulator transition of fermions on a kagome lattice at 1/3 filling. Phys. Rev. Lett. 104, 196401 (2010).

    Article  ADS  Google Scholar 

  31. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  32. Seki, S. & Mochizuki, M. Skyrmions in Magnetic Materials 22–26 (Springer, Cham, 2016)

    Book  Google Scholar 

  33. Montoya, S. A. et al. Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices. Phys. Rev. B 95, 024415 (2017).

    Article  ADS  Google Scholar 

  34. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. Hasan, M. Z. et al. topological insulators, helical topological superconductors and Weyl fermion semimetals. Phys. Scr. T164, 014001 (2015); corrigendum T168, 019501 (2016).

    Article  ADS  Google Scholar 

  36. Xu, S. Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Experimental and theoretical work at Princeton University was supported by the Gordon and Betty Moore Foundation (GBMF4547/Hasan) and the United States Department of Energy (US DOE) under the Basic Energy Sciences programme (grant number DOE/BES DE-FG-02-05ER46200). Work at the Institute of Physics of the Chinese Academy of Science (IOP CAS) was supported by the National Key R&D Program of China (grant number 2017YFA0206303). Work at Boston College is supported by US DOE grant DE-FG02-99ER45747. We also acknowledge the Natural Science Foundation of China (grant numbers 11790313, 11774422 and 11774424), National Key R&D Program of China (numbers 2016YFA0300403 and 2017YFA0302903), the Key Research Program of the Chinese Academy of Sciences (number XDPB08-1), Princeton Center for Theoretical Science (PCTS) and Princeton Institute for the Science and Technology of Materials (PRISM)’s Imaging and Analysis Center at Princeton University. T.-R.C. was supported by the Ministry of Science and Technology under a MOST Young Scholar Fellowship (MOST Grant for the Columbus Program number 107-2636-M-006-004-), the National Cheng Kung University, Taiwan, and the National Center for Theoretical Sciences (NCTS), Taiwan. M.Z.H. acknowledges support from Lawrence Berkeley National Laboratory and the Miller Institute of Basic Research in Science at the University of California, Berkeley in the form of a Visiting Miller Professorship. We thank D. Huse and T. Neupert for discussions.

Reviewer information

Nature thanks S. Sachdev and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.-X.Y. and S.S.Z. conducted the STM and STS experiments in consultation with M.Z.H.; H.L.,W.W., C.X. and S.J. synthesized and characterized the sequence of samples; K.J., G.C., B.Z., B.L., K.L., T-R.C., H.L., Z.-Y.L. and Z.W. carried out theoretical analysis in consultation with J.Y. and M.Z.H.; I.B., T.A.C., H.Z., S.-Y.X. and G.B. contributed to sample characterization and instrument calibration; J.-X.Y., S.S.Z. and M.Z.H performed the data analysis and figure development and wrote the paper with contributions from all authors; M.Z.H. supervised the project. All authors discussed the results, interpretation and conclusion.

Corresponding author

Correspondence to M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Longitudinal resistivity measurement.

The longitudinal resistivity ρxx was measured from 380 K to 5 K at zero magnetic field. The current was applied along the ab plane.

Extended Data Fig. 2 Magnetization at 5 K in different magnetic field directions.

The sharp saturation of the magnetization curve for the in-plane field suggests that the easy magnetization axis lies in the ab plane.

Extended Data Fig. 3 Interlayer resistivity evolution as a function of in-plane field azimuth angle.

The black line is the fitting curve. The inset shows a schematic of the sample (black hexagon) with the concentric electrical contacts used in such measurements (inner blue circle, voltage contacts; outer blue ring, current contacts).

Extended Data Fig. 4 Spectroscopic maps with vector-field conditions.

a, Topography of a large FeSn surface. b, Differential conductance map taken in the area shown in a at the energy of the side peak. c, Differential conductance maps with various vector-field conditions taken in the area shown in a at the energy of the side peak. The black arrow indicates the a axis and the red arrow represents the field vector. Their corresponding FFT images (known as QPI signals) are shown in Fig. 3.

Extended Data Fig. 5 Topographic image of a FeSn surface, showing two kinds of dark-spot defect.

The centres of the defects are located at Fe and Sn sites, based on the atomic assignment from Fig. 1.

Extended Data Fig. 6 Nonmagnetic scattering channels for helical spin–momentum texture with different magnetization directions.

a, The upper panel shows that spins cant towards the c axis to generate a net c-axis magnetization. The lower panel shows that backscattering is allowed in all directions. b, c, To generate a net in-plane magnetization, the momentum of the band shifts perpendicular to the in-plane direction and the spins reorganize their directions (similar to the Edelstein effect31), as shown in the upper panels (the faded red arrows represent helical spin texture without magnetization for reference). The spins are still locked perpendicular to the original momentum centre31 (black circle). The lower panels show that backscattering is allowed only in the magnetization direction and forbidden in the perpendicular direction owing to spin reversal.

Extended Data Fig. 7 Lorentz transmission electron microscopy images of the magnetic domain structures taken at different temperatures after turning off the external 0.7-T magnetic field applied along the c axis.

The measurement is taken in the ab plane in these images and the different shades indicate the different orientation of the spin relative to the ab plane. The skyrmions and stripe domains gradually disappear when the temperature drops to 130 K.

Extended Data Fig. 8 STM results on Mn3Sn.

a, b, Single crystals of Mn3Sn and Fe3Sn2, respectively. c, d, Typical STM images of the cleavage surface of Mn3Sn showing no clear atomic lattice structure.

Extended Data Fig. 9 Kagome lattice model.

a, Kagome lattice with Kane–Mele SOI. Here, \({v}_{{\rm{A}}{\rm{B}}}=2({{\boldsymbol{d}}}_{1}\times {{\boldsymbol{d}}}_{2})\cdot {\boldsymbol{z}}/\sqrt{3}=-1\), where d1 is the unit vector from A to C and d2 is the unit vector from C to B. b, Flux Ω enclosed by the fundamental plaquette formed by sites A, B and C on the kagome lattice.

Extended Data Fig. 10 Band dispersion from the kagome model.

a, Red lines are the band structure for Mi along the z direction (Mc) with a Dirac mass generated by λ. Blue lines are the band structure for Mi in the xy plane (Mab), showing a vanishing Dirac mass gap even in the presence of λ. b, Similar to a but including bilayer splitting due to interlayer coupling. Only the spin minority bands are shown.

Extended Data Fig. 11 Effect of spin Berry phase.

a, The spin Berry phase Ωijk is equal to half the solid angle formed by spins Si, Sj and Sk. b, An electron hopping in the chiral spin background is equivalent to hopping in the presence of a gauge flux Ω. c, Band structures in the presence of both λand chiral flux Ω, when the magnetic field and the magnetization are along the xy plane (Mab) and the z direction (Mc).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, JX., Zhang, S.S., Li, H. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018). https://doi.org/10.1038/s41586-018-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0502-7

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing