Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decoding the phase structure of QCD via particle production at high energy

Abstract

Recent studies based on lattice Monte Carlo simulations of quantum chromodynamics (QCD)—the theory of strong interactions—have demonstrated that at high temperature there is a phase change from confined hadronic matter to a deconfined quark–gluon plasma in which quarks and gluons can travel distances that greatly exceed the size of hadrons. Here we show that the phase structure of such strongly interacting matter can be decoded by analysing particle production in high-energy nuclear collisions within the framework of statistical hadronization, which accounts for the thermal distribution of particle species. Our results represent a phenomenological determination of the location of the phase boundary of strongly interacting matter, and imply quark–hadron duality at this boundary.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hadron abundances and predictions of the statistical hadronization model.
Fig. 2: Mass dependence of hadron yields compared with predictions of the statistical hadronization model.
Fig. 3: Energy dependence of chemical freeze-out parameters Tcf and μb.
Fig. 4: Collision-energy dependence of the relative abundance of several hadron species.
Fig. 5: Phenomenological phase diagram of strongly interacting matter.
Fig. 6: Relative production of ψ(2S) and J/ψ mesons as a function of collision energy.
Fig. 7: The nuclear modification factor RAA for inclusive J/ψ production.
Fig. 8: Multiplicity dependence of production ratio of bottomonium states ϒ(2S) and ϒ(1S).

References

  1. 1.

    Gyulassy, M. & McLerran, L. New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750, 30–63 (2005).

    Google Scholar 

  2. 2.

    Braun-Munzinger, P. & Stachel, J. The quest for the quark–gluon plasma. Nature 448, 302–309 (2007). Concise review of pre-LHC situation and summary of expectations.

    Google Scholar 

  3. 3.

    Jacak, B. V. & Müller, B. The exploration of hot nuclear matter. Science 337, 310–314 (2012).

    Google Scholar 

  4. 4.

    Itoh, N. Hydrostatic equilibrium of hypothetical quark stars. Prog. Theor. Phys. 44, 291–292 (1970).

    Google Scholar 

  5. 5.

    Collins, J. C. & Perry, M. Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett. 34, 1353–1356 (1975).

    Google Scholar 

  6. 6.

    Cabibbo, N. & Parisi, G. Exponential hadronic spectrum and quark liberation. Phys. Lett. B 59, 67–69 (1975).

    Google Scholar 

  7. 7.

    Chapline, G. & Nauenberg, M. Asymptotic freedom and the baryon-quark phase transition. Phys. Rev. D 16, 450–456 (1977).

    Google Scholar 

  8. 8.

    Shuryak, E. V. Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78, 150–153 (1978).

    Google Scholar 

  9. 9.

    Boyanovsky, D., de Vega, H. & Schwarz, D. Phase transitions in the early and the present universe. Annu. Rev. Nucl. Part. Sci. 56, 441–500 (2006).

    Google Scholar 

  10. 10.

    Rajagopal, K. & Wilczek, F. in At The Frontier Of Particle Physics. Handbook of QCD Vol. 3 (ed. Shifman, M.) 2061–2151 (World Scientific, New Jersey, 2001).

  11. 11.

    Heinz, U. W. & Jacob, M. Evidence for a new state of matter: an assessment of the results from the CERN lead beam program. Preprint at https://arxiv.org/abs/nucl-th/0002042 (2000).

  12. 12.

    E877 Collaboration. Observation of anisotropic event shapes and transverse flow in Au + Au collisions at AGS energy. Phys. Rev. Lett. 73, 2532–2535 (1994).

    Google Scholar 

  13. 13.

    STAR Collaboration. Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005).

    Google Scholar 

  14. 14.

    BRAHMS Collaboration. Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005).

    Google Scholar 

  15. 15.

    PHENIX Collaboration. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 757, 184–283 (2005).

    Google Scholar 

  16. 16.

    PHOBOS Collaboration. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005).

    Google Scholar 

  17. 17.

    Müller, B., Schukraft, J. & Wyslouch, B. First results from Pb+Pb collisions at the LHC. Annu. Rev. Nucl. Part. Sci. 62, 361–386 (2012). Impact of the first LHC data on QGP research.

    Google Scholar 

  18. 18.

    Schukraft, J. Heavy ion physics at the Large Hadron Collider: what is new? What is next? Phys. Scr. T 158, 014003 (2013).

    Google Scholar 

  19. 19.

    Braun-Munzinger, P., Koch, V., Schäfer, T. & Stachel, J. Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rep. 621, 76–126 (2016).

    Google Scholar 

  20. 20.

    Braun-Munzinger, P. & Wambach, J. The phase diagram of strongly-interacting matter. Rev. Mod. Phys. 81, 1031–1050 (2009).

    Google Scholar 

  21. 21.

    Müller, B. Investigation of hot QCD matter: theoretical aspects. Phys. Scr. T 158, 014004 (2013).

    Google Scholar 

  22. 22.

    Satz, H. Probing the states of matter in QCD. Int. J. Mod. Phys. A 28, 1330043 (2013).

    Google Scholar 

  23. 23.

    Particle Data Group Collaboration. Review of particle physics. Chin. Phys. C 40, 100001 (2016).

    Google Scholar 

  24. 24.

    Gross, D. J. & Wilczek, F. Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973).

    Google Scholar 

  25. 25.

    Politzer, H. D. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973).

    Google Scholar 

  26. 26.

    Karsch, F. Lattice QCD at high temperature and density. Lect. Notes Phys. 583, 209–249 (2002).

    Google Scholar 

  27. 27.

    Wilczek, F. QCD made simple. Phys. Today 53, 22–28 (2000).

    Google Scholar 

  28. 28.

    Bazavov, A. et al. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012).

    Google Scholar 

  29. 29.

    Aoki, Y., Endrodi, G., Fodor, Z., Katz, S. & Szabo, K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006).

    Google Scholar 

  30. 30.

    HotQCD Collaboration. The equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). Determination of the equation of state of hot QGP from LQCD.

    Google Scholar 

  31. 31.

    Borsányi, S. et al. Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III. J. High Energy Phys. 9, 73 (2010).

    Google Scholar 

  32. 32.

    Borsányi, S. et al. Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99–104 (2014).

    Google Scholar 

  33. 33.

    Luo, X. & Xu, N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview. Nucl. Sci. Tech. 28, 112 (2017).

    Google Scholar 

  34. 34.

    Karsch, F. The last word(s) on CPOD 2013. Proc. Sci. 185, 46 (2013).

    Google Scholar 

  35. 35.

    Dürr, S. et al. Ab-initio determination of light hadron masses. Science 322, 1224–1227 (2008).

    Google Scholar 

  36. 36.

    Bazavov, A. et al. The QCD equation of state to \({\mathscr{O}}({\mu }_{B}^{6})\) from lattice QCD. Phys. Rev. D 95, 054504 (2017).

    Google Scholar 

  37. 37.

    Andronic, A., Braun-Munzinger, P., Stachel, J. & Winn, M. Interacting hadron resonance gas meets lattice QCD. Phys. Lett. B 718, 80–85 (2012).

    Google Scholar 

  38. 38.

    Karsch, F. Thermodynamics of strong interaction matter from lattice QCD and the hadron resonance gas model. Acta Phys. Polon. B 7, 117–126 (2014).

    Google Scholar 

  39. 39.

    Dashen, R., Ma, S.-K. & Bernstein, H. J. S Matrix formulation of statistical mechanics. Phys. Rev. 187, 345–370 (1969).

    Google Scholar 

  40. 40.

    Cleymans, J. & Satz, H. Thermal hadron production in high-energy heavy ion collisions. Z. Phys. C 57, 135–147 (1993).

    Google Scholar 

  41. 41.

    Braun-Munzinger, P., Stachel, J., Wessels, J. & Xu, N. Thermal equilibration and expansion in nucleus-nucleus collisions at the AGS. Phys. Lett. B 344, 43–48 (1995). Comprehensive application of the statistical hadronization model to data.

    Google Scholar 

  42. 42.

    Braun-Munzinger, P., Redlich, K. & Stachel, J. in Quark Gluon Plasma Vol. 3 (eds Hwa, R. C. & Wang, X.-N.) 491–599 (World Scientific, Singapore, 2004).

  43. 43.

    Braun-Munzinger, P., Magestro, D., Redlich, K. & Stachel, J. Hadron production in Au–Au collisions at RHIC. Phys. Lett. B 518, 41–46 (2001). Establishing the statistical hadronization model in the RHIC era.

    Google Scholar 

  44. 44.

    Letessier, J. & Rafelski, J. Hadron production and phase changes in relativistic heavy ion collisions. Eur. Phys. J. A 35, 221–242 (2008).

    Google Scholar 

  45. 45.

    Stachel, J., Andronic, A., Braun-Munzinger, P. & Redlich, K. Confronting LHC data with the statistical hadronization model. J. Phys. Conf. Ser. 509, 012019 (2014).

    Google Scholar 

  46. 46.

    Hagedorn, R. How we got to QCD matter from the hadron side by trial and error. Lect. Notes Phys. 221, 53–76 (1985).

    Google Scholar 

  47. 47.

    Cleymans, J. & Redlich, K. Unified description of freezeout parameters in relativistic heavy ion collisions. Phys. Rev. Lett. 81, 5284–5286 (1998). First interpretation of the chemical freeze-out line.

    Google Scholar 

  48. 48.

    Stock, R. The parton to hadron phase transition observed in Pb+Pb collisions at 158-GeV per nucleon. Phys. Lett. B 456, 277–282 (1999).

    Google Scholar 

  49. 49.

    Braun-Munzinger, P. & Stachel, J. Particle ratios, equilibration, and the QCD phase boundary. J. Phys. G 28, 1971–1976 (2002).

    Google Scholar 

  50. 50.

    Braun-Munzinger, P., Stachel, J. & Wetterich, C. Chemical freezeout and the QCD phase transition temperature. Phys. Lett. B 596, 61–69 (2004).

    Google Scholar 

  51. 51.

    Andronic, A., Braun-Munzinger, P. & Stachel, J. Thermal hadron production in relativistic nuclear collisions: the hadron mass spectrum, the horn, and the QCD phase transition. Phys. Lett. B 673, 142–145 (2009).

    Google Scholar 

  52. 52.

    Floerchinger, S. & Wetterich, C. Chemical freeze-out in heavy ion collisions at large baryon densities. Nucl. Phys. A 890–891, 11–24 (2012).

    Google Scholar 

  53. 53.

    Bazavov, A. et al. Freeze-out conditions in heavy ion collisions from QCD thermodynamics. Phys. Rev. Lett. 109, 192302 (2012).

    Google Scholar 

  54. 54.

    ALICE Collaboration. Centrality dependence of π, K, p production in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Rev. C 88, 044910 (2013).

    Google Scholar 

  55. 55.

    ALICE Collaboration. \({K}_{S}^{0}\) and Λ production in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\)  = 2.76 TeV. Phys. Rev. Lett. 111, 222301 (2013).

    Google Scholar 

  56. 56.

    ALICE Collaboration. Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Lett. B 728, 216–227 (2014).

    Google Scholar 

  57. 57.

    ALICE Collaboration. K *(892)0 and ϕ(1020) production in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Rev. C 91, 024609 (2015).

    Google Scholar 

  58. 58.

    ALICE Collaboration. \({}_{\Lambda }^{3}{\rm{H}}\) and \({}_{\bar{\Lambda }}^{3}\bar{{\rm{H}}}\) production in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Lett. B 754, 360–372 (2016).

    Google Scholar 

  59. 59.

    ALICE Collaboration. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 93, 024917 (2016).

    Google Scholar 

  60. 60.

    ALICE Collaboration. Production of 4He and \(\bar{{}^{4}{\rm{H}}{\rm{e}}}\) in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV at the LHC. Nucl. Phys. A 971, 1–20 (2018).

    Google Scholar 

  61. 61.

    ALICE Collaboration. Pion, kaon, and proton production in central Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Rev. Lett. 109, 252301 (2012).

    Google Scholar 

  62. 62.

    Becattini, F., Grossi, E., Bleicher, M., Steinheimer, J. & Stock, R. Centrality dependence of hadronization and chemical freeze-out conditions in heavy ion collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Rev. C 90, 054907 (2014).

    Google Scholar 

  63. 63.

    ALICE Collaboration. Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nat. Phys. 13, 535–539 (2017).

    Google Scholar 

  64. 64.

    Andronic, A., Braun-Munzinger, P., Stachel, J. & Stöcker, H. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 697, 203–207 (2011).

    Google Scholar 

  65. 65.

    Chapline, G. & Kerman, A. On the Possibility of Making Quark Matter in Nuclear Collisions. Report No. MIT-CTP-695, https://inspirehep.net/record/134446/files/CTP-695.pdf (MIT Center of Theoretical Physics, 1978).

  66. 66.

    Csernai, L. P. & Kapusta, J. I. Entropy and cluster production in nuclear collisions. Phys. Rep. 131, 223–318 (1986).

    Google Scholar 

  67. 67.

    Hirenzaki, S., Suzuki, T. & Tanihata, I. A general formula of the coalescence model. Phys. Rev. C 48, 2403–2408 (1993).

    Google Scholar 

  68. 68.

    ExHIC Collaboration. Exotic hadrons from heavy ion collisions. Prog. Part. Nucl. Phys. 95, 279–322 (2017).

    Google Scholar 

  69. 69.

    NPLQCD Collaboration. Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry. Phys. Rev. D 87, 034506 (2013).

    Google Scholar 

  70. 70.

    Hagedorn, R. & Redlich, K. Statistical thermodynamics in relativistic particle and ion physics: canonical or grand canonical? Z. Phys. C 27, 541–551 (1985). Theoretical foundations of the statistical thermodynamics of particle production.

    Google Scholar 

  71. 71.

    Hamieh, S., Redlich, K. & Tounsi, A. Canonical description of strangeness enhancement from p–A to Pb–Pb collisions. Phys. Lett. B 486, 61–66 (2000).

    Google Scholar 

  72. 72.

    Braun-Munzinger, P. & Stachel, J. (Non)thermal aspects of charmonium production and a new look at J/ψ suppression. Phys. Lett. B 490, 196–202 (2000). Statistical hadronization model for heavy quarks.

    Google Scholar 

  73. 73.

    NA57 Collaboration. Energy dependence of hyperon production in nucleus nucleus collisions at SPS. Phys. Lett. B 595, 68–74 (2004).

    Google Scholar 

  74. 74.

    Becattini, F. A thermodynamical approach to hadron production in e+e collisions. Z. Phys. C 69, 485–492 (1996).

    Google Scholar 

  75. 75.

    Becattini, F., Castorina, P., Manninen, J. & Satz, H. The thermal production of strange and non-strange hadrons in e+e collisions. Eur. Phys. J. C 56, 493–510 (2008).

    Google Scholar 

  76. 76.

    Andronic, A., Beutler, F., Braun-Munzinger, P., Redlich, K. & Stachel, J. Thermal description of hadron production in e+e collisions revisited. Phys. Lett. B 675, 312–318 (2009).

    Google Scholar 

  77. 77.

    STAR Collaboration. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 96, 044904 (2017).

    Google Scholar 

  78. 78.

    Cleymans, J., Oeschler, H. & Redlich, K. Influence of impact parameter on thermal description of relativistic heavy ion collisions at (1–2)A GeV. Phys. Rev. C 59, 1663–1673 (1999).

    Google Scholar 

  79. 79.

    Braun-Munzinger, P., Heppe, I. & Stachel, J. Chemical equilibration in Pb + Pb collisions at the SPS. Phys. Lett. B 465, 15–20 (1999).

    Google Scholar 

  80. 80.

    Manninen, J. & Becattini, F. Chemical freeze-out in ultra-relativistic heavy ion collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 130 and 200 GeV. Phys. Rev. C 78, 054901 (2008).

    Google Scholar 

  81. 81.

    STAR Collaboration. Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 9.2 GeV. Phys. Rev. C 81, 024911 (2010).

    Google Scholar 

  82. 82.

    Braun-Munzinger, P. & Stachel, J. Dynamics of ultrarelativistic nuclear collisions with heavy beams: an experimental overview. Nucl. Phys. A 638, 3c–18c (1998). Establishing the boundary line for chemical freeze-out.

    Google Scholar 

  83. 83.

    Hagedorn, R. Statistical thermodynamics of strong interactions at high-energies. Nuovo Cim. 3 (Suppl.), 147–186 (1965).

    Google Scholar 

  84. 84.

    Hagedorn, R. Miscellaneous Elementary Remarks about the Phase Transition from a Hadron Gas to a Quark-Gluon Plasma. Report No. CERN-TH-4100, http://cds.cern.ch/record/158166/files/198504017.pdf (CERN, 1985).

  85. 85.

    Stephanov, M. A., Rajagopal, K. & Shuryak, E. V. Signatures of the tricritical point in QCD. Phys. Rev. Lett. 81, 4816–4819 (1998).

    Google Scholar 

  86. 86.

    Braun-Munzinger, P., Cleymans, J., Oeschler, H. & Redlich, K. Maximum relative strangeness content in heavy ion collisions around 30 GeV/A. Nucl. Phys. A 697, 902–912 (2002).

    Google Scholar 

  87. 87.

    ALICE Collaboration. Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.02 TeV. Phys. Rev. Lett. 116, 222302 (2016).

    Google Scholar 

  88. 88.

    Dainese, A. et al. Heavy ions at the Future Circular Collider. CERN Yellow Rep. 3, 635–691 (2017); https://e-publishing.cern.ch/index.php/CYRM/article/view/515/371.

    Google Scholar 

  89. 89.

    Pierre Auger Collaboration. Ultra-high energy cosmic rays: recent results and future plans of Auger. AIP Conf. Proc. 1852, 040001 (2017).

  90. 90.

    Borsanyi, S. et al. QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2. J. High Energy Phys. 8, 53 (2012).

    Google Scholar 

  91. 91.

    PHENIX Collaboration. Enhanced production of direct photons in Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV and implications for the initial temperature. Phys. Rev. Lett. 104, 132301 (2010).

    Google Scholar 

  92. 92.

    ALICE Collaboration. Direct photon production in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Lett. B 754, 235–248 (2016).

    Google Scholar 

  93. 93.

    Braun-Munzinger, P., Kalweit, A., Redlich, K. & Stachel, J. Confronting fluctuations of conserved charges in central nuclear collisions at the LHC with predictions from lattice QCD. Phys. Lett. B 747, 292–298 (2015).

    Google Scholar 

  94. 94.

    Karsch, F. Determination of freeze-out conditions from lattice QCD calculations. Cent. Eur. J. Phys. 10, 1234–1237 (2012).

    Google Scholar 

  95. 95.

    Borsanyi, S. et al. Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency? Phys. Rev. Lett. 113, 052301 (2014).

    Google Scholar 

  96. 96.

    PHENIX Collaboration. Measurement of higher cumulants of net-charge multiplicity distributions in Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 7.7–200 GeV. Phys. Rev. C 93, 011901 (2016).

    Google Scholar 

  97. 97.

    Braun-Munzinger, P. & Redlich, K. Charmonium production from the secondary collisions at LHC energy. Eur. Phys. J. C 16, 519–525 (2000).

    Google Scholar 

  98. 98.

    Zhang, B.-W., Ko, C.-M. & Liu, W. Thermal charm production in a quark-gluon plasma in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 25.5 TeV. Phys. Rev. C 77, 024901 (2008).

    Google Scholar 

  99. 99.

    Zhou, K., Chen, Z., Greiner, C. & Zhuang, P. Thermal charm and charmonium production in quark gluon plasma. Phys. Lett. B 758, 434–439 (2016).

    Google Scholar 

  100. 100.

    Cacciari, M. et al. Theoretical predictions for charm and bottom production at the LHC. J. High Energy Phys. 10, 137 (2012).

    Google Scholar 

  101. 101.

    Andronic, A., Braun-Munzinger, P., Redlich, K. & Stachel, J. Statistical hadronization of heavy quarks in ultra-relativistic nucleus-nucleus collisions. Nucl. Phys. A 789, 334–356 (2007). Working out predictions for charmonium and bottomonium production at collider energies.

    Google Scholar 

  102. 102.

    ALICE Collaboration. Suppression of high transverse momentum D mesons in central Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. J. High Energy Phys. 9, 112 (2012).

    Google Scholar 

  103. 103.

    ALICE Collaboration. D meson elliptic flow in noncentral Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Rev. Lett. 111, 102301 (2013).

    Google Scholar 

  104. 104.

    STAR Collaboration. Observation of D 0 meson nuclear modifications in Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV. Phys. Rev. Lett. 113, 142301 (2014).

  105. 105.

    Matsui, T. & Satz, H. J/ψ suppression by quark-gluon plasma formation. Phys. Lett. B 178, 416–422 (1986). Debye screening of J / ψ mesons in a QGP.

  106. 106.

    Vogt, R. J/ψ production and suppression. Phys. Rep. 310, 197–260 (1999).

    Google Scholar 

  107. 107.

    Braun-Munzinger, P. & Stachel, J. in Relativistic Heavy Ion Physics (ed. Stock, R.) 424–444 (Landolt-Börnstein – Group I: Elementary Particles, Nuclei and Atoms Vol. 23, Springer, Berlin, 2010).

  108. 108.

    Andronic, A., Braun-Munzinger, P., Redlich, K. & Stachel, J. The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC. J. Phys. G 38, 124081 (2011).

    Google Scholar 

  109. 109.

    Thews, R. L., Schroedter, M. & Rafelski, J. Enhanced J/ψ production in deconfined quark matter. Phys. Rev. C 63, 054905 (2001). Continuous formation and destruction of charmonia in the QGP.

    Google Scholar 

  110. 110.

    Liu, Y.-P., Qu, Z., Xu, N. & Zhuang, P.-F. J/ψ transverse momentum distribution in high energy nuclear collisions at RHIC. Phys. Lett. B 678, 72–76 (2009).

    Google Scholar 

  111. 111.

    Grandchamp, L., Rapp, R. & Brown, G. E. In medium effects on charmonium production in heavy ion collisions. Phys. Rev. Lett. 92, 212301 (2004).

    Google Scholar 

  112. 112.

    Emerick, A., Zhao, X. & Rapp, R. Bottomonia in the quark-gluon plasma and their production at RHIC and LHC. Eur. Phys. J. A 48, 72 (2012).

    Google Scholar 

  113. 113.

    Zhou, K., Xu, N., Xu, Z. & Zhuang, P. Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider. Phys. Rev. C 89, 054911 (2014).

    Google Scholar 

  114. 114.

    NA50 Collaboration. ψ′ production in Pb-Pb collisions at 158 GeV/nucleon. Eur. Phys. J. C 49, 559–567 (2007).

    Google Scholar 

  115. 115.

    ALICE Collaboration. J/ψ elliptic flow in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) =2.76 TeV. Phys. Rev. Lett. 111, 162301 (2013).

    Google Scholar 

  116. 116.

    ALICE Collaboration. J/ψ elliptic flow in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.02 TeV. Phys. Rev. Lett. 119, 242301 (2017).

    Google Scholar 

  117. 117.

    ALICE Collaboration. D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.02 TeV. Phys. Rev. Lett. 120, 102301 (2018).

    Google Scholar 

  118. 118.

    STAR Collaboration. Measurement of J/ψ azimuthal anisotropy in Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV. Phys. Rev. Lett. 111, 052301 (2013).

    Google Scholar 

  119. 119.

    NA50 Collaboration. J/ψ azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon. Eur. Phys. J. C 61, 853–858 (2009).

    Google Scholar 

  120. 120.

    Kluberg, L. & Satz, H. in Relativistic Heavy Ion Physics (ed. Stock, R.) 373–423 (Landolt-Börnstein – Group I: Elementary Particles, Nuclei and Atoms Vol. 23, Springer, Berlin, 2010).

  121. 121.

    Andronic, A., Braun-Munzinger, P., Redlich, K. & Stachel, J. Evidence for charmonium generation at the phase boundary in ultra-relativistic nuclear collisions. Phys. Lett. B 652, 259–261 (2007).

    Google Scholar 

  122. 122.

    ALICE Collaboration. Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Lett. B 743, 314–327 (2014). First experimental evidence of reduced J / ψ suppression at LHC energy.

    Google Scholar 

  123. 123.

    ALICE Collaboration. J/ψ suppression at forward rapidity in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.02 TeV. Phys. Lett. B 766, 212–224 (2017).

    Google Scholar 

  124. 124.

    Zhao, X. & Rapp, R. Medium modifications and production of charmonia at LHC. Nucl. Phys. A 859, 114–125 (2011).

    Google Scholar 

  125. 125.

    CMS Collaboration. Event activity dependence of ϒ(nS) production in \(\sqrt{{s}_{{\rm{NN}}}}\)=5.02 TeV pPb and \(\sqrt{{s}_{{\rm{NN}}}}\)=2.76 TeV pp collisions. J. High Energy Phys. 4, 103 (2014).

    Google Scholar 

  126. 126.

    CMS Collaboration. Observation of sequential ϒ suppression in PbPb collisions. Phys. Rev. Lett. 109, 222301 (2012).

    Google Scholar 

  127. 127.

    ALICE Collaboration. Suppression of ϒ(1S) at forward rapidity in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Lett. B 738, 361–372 (2014).

    Google Scholar 

  128. 128.

    PHENIX Collaboration. Measurement of ϒ(1S + 2S + 3S) production in p+p and Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV. Phys. Rev. C 91, 024913 (2015).

    Google Scholar 

  129. 129.

    Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Google Scholar 

  130. 130.

    Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    Google Scholar 

  131. 131.

    Andronic, A. An overview of the experimental study of quark-gluon matter in high-energy nucleus-nucleus collisions. Int. J. Mod. Phys. A 29, 1430047 (2014).

    Google Scholar 

  132. 132.

    Vovchenko, V., Begun, V. V. & Gorenstein, M. I. Hadron multiplicities and chemical freeze-out conditions in proton-proton and nucleus-nucleus collisions. Phys. Rev. C 93, 064906 (2016).

    Google Scholar 

  133. 133.

    Becattini, F., Steinheimer, J., Stock, R. & Bleicher, M. Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line. Phys. Lett. B 764, 241–246 (2017).

    Google Scholar 

  134. 134.

    NA51 Collaboration. J/ψ, ψ′ and Drell-Yan production in pp and pd interactions at 450 GeV/c. Phys. Lett. B 438, 35–40 (1998).

    Google Scholar 

  135. 135.

    HERA-B Collaboration. A measurement of the ψ′ to J/ψ production ratio in 920-GeV proton-nucleus interactions. Eur. Phys. J. C 49, 545–558 (2007).

    Google Scholar 

  136. 136.

    PHENIX Collaboration. Measurement of the relative yields of ψ(2S) to ψ(1S) mesons produced at forward and backward rapidity in p+p, p+Al, p+Au and 3He+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV. Phys. Rev. C 95, 034904 (2017).

    Google Scholar 

  137. 137.

    LHCb Collaboration. Measurement of J/ψ production in pp collisions at \(\sqrt{s}\) = 7 TeV. Eur. Phys. J. C 71, 1645 (2011).

    Google Scholar 

  138. 138.

    LHCb Collaboration. Measurement of ψ(2S) meson production in pp collisions at \(\sqrt{s}\) =7 TeV. Eur. Phys. J. C 72, 2100 (2012).

    Google Scholar 

  139. 139.

    ALICE Collaboration. Energy dependence of forward-rapidity J/ψ and ψ(2S) production in pp collisions at the LHC. Eur. Phys. J. C 77, 392 (2017).

    Google Scholar 

  140. 140.

    PHENIX Collaboration. J/ψ production vs centrality, transverse momentum, and rapidity in Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV. Phys. Rev. Lett. 98, 232301 (2007).

    Google Scholar 

  141. 141.

    PHENIX Collaboration. J/ψ suppression at forward rapidity in Au+Au collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV. Phys. Rev. C 84, 054912 (2011).

    Google Scholar 

  142. 142.

    STAR Collaboration. J/ψ production at low p T in Au+Au and Cu+Cu collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 200 GeV at STAR. Phys. Rev. C 90, 024906 (2014).

    Google Scholar 

  143. 143.

    Andronic, A. et al. The thermal proton yield anomaly in Pb-Pb collisions at the LHC and its resolution. Preprint at https://arxiv.org/abs/1808.03102 (2018).

  144. 144.

    Steinbrecher, P. The QCD crossover at zero and non-zero baryon densities from lattice QCD. Preprint at https://arxiv.org/abs/1807.05607 (2018).

Download references

Acknowledgements

K.R. acknowledges support by the Polish National Science Centre under Maestro grant DEC-2013/10/A/ST2/00106. This work is part of and supported by the DFG Collaborative Research Centre ‘SFB1225/ISOQUANT’.

Author contributions

All authors contributed equally to the physics analysis and to writing the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Braun-Munzinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andronic, A., Braun-Munzinger, P., Redlich, K. et al. Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321–330 (2018). https://doi.org/10.1038/s41586-018-0491-6

Download citation

Keywords

  • Ultra-relativistic Nuclear Collisions
  • Statistical Hadronization Model
  • Relativistic Heavy Ion Collider (RHIC)
  • Hadron Yield
  • Heavy Quark

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing