Facing up to the global challenges of ageing

Abstract

Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cumulative survival and age-specific death rates in the Netherlands in 1850, 1900 and 1950.
Fig. 2: Disability-adjusted life years for age-related diseases in three global regions.
Fig. 3: Schematic representation of the timing and progression of age-related phenotypes in adult humans.
Fig. 4: Ageing is characterized by mechanistic hallmarks that contribute to ageing to different extents in different organisms, and in different cell types within an organism.

References

  1. 1.

    Oeppen, J. & Vaupel, J. W. Broken limits to life expectancy. Science 296, 1029–1031 (2002).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Waite, L. J. Aging, Health, and Public Policy: Demographic and Economic Perspectives (Population Council, 2004).

  3. 3.

    Fogel, R. W. & Costa, D. L. A theory of technophysio evolution, with some implications for forecasting population, health care costs, and pension costs. Demography 34, 49–66 (1997).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Vaupel, J. W. et al. Biodemographic trajectories of longevity. Science 280, 855–860 (1998).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Dong, X., Milholland, B. & Vijg, J. Evidence for a limit to human lifespan. Nature 538, 257–259 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  6. 6.

    Kontis, V. et al. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389, 1323–1335 (2017). Analysis of age-specific death rates in 35 industrialized countries shows that there is a high probability that life expectancy in these countries will continue to increase during the coming decades.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Christensen, K. et al. Physical and cognitive functioning of people older than 90 years: a comparison of two Danish cohorts born 10 years apart. Lancet 382, 1507–1513 (2013).

    PubMed  Article  Google Scholar 

  8. 8.

    Zeng, Y., Feng, Q., Hesketh, T., Christensen, K. & Vaupel, J. W. Survival, disabilities in activities of daily living, and physical and cognitive functioning among the oldest-old in China: a cohort study. Lancet 389, 1619–1629 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Burger, O., Baudisch, A. & Vaupel, J. W. Human mortality improvement in evolutionary context. Proc. Natl Acad. Sci. USA 109, 18210–18214 (2012).

    ADS  PubMed  Article  Google Scholar 

  10. 10.

    Poulain, M., Herm, A. & Pes, G. The blue zones: areas of exceptional longevity around the world. Vienna Yearb. Popul. Res. 11, 87–108 (2013).

    Google Scholar 

  11. 11.

    Cooper, R., Strand, B. H., Hardy, R., Patel, K. V. & Kuh, D. Physical capability in mid-life and survival over 13 years of follow-up: British birth cohort study. Br. Med. J. 348, g2219 (2014).

    Article  Google Scholar 

  12. 12.

    Crimmins, E. M. Lifespan and healthspan: past, present, and promise. Gerontologist 55, 901–911 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Jagger, C. et al. Inequalities in healthy life years in the 25 countries of the European Union in 2005: a cross-national meta-regression analysis. Lancet 372, 2124–2131 (2008).

    PubMed  Article  Google Scholar 

  14. 14.

    World Report on Ageing and Health. http://who.int/ageing/events/world-report-2015-launch/en/ (WHO, 2015).

  15. 15.

    Stenholm, S. et al. Body mass index as a predictor of healthy and disease-free life expectancy between ages 50 and 75: a multicohort study. Int. J. Obes. 41, 769–775 (2017).

    Article  CAS  Google Scholar 

  16. 16.

    Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Christensen, K., McGue, M., Petersen, I., Jeune, B. & Vaupel, J. W. Exceptional longevity does not result in excessive levels of disability. Proc. Natl Acad. Sci. USA 105, 13274–13279 (2008). A survey of a Danish cohort born in 1905 and followed for physical and cognitive independence from 1998 to 2005 across the age range of 92–100 years shows that lifespan extension of a population does not necessarily results in exceptional levels of disability at high ages.

    ADS  PubMed  Article  Google Scholar 

  18. 18.

    Andersen, S. L., Sebastiani, P., Dworkis, D. A., Feldman, L. & Perls, T. T. Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J. Gerontol. A 67A, 395–405 (2012).

    Article  Google Scholar 

  19. 19.

    Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  20. 20.

    Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106–118 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span—from yeast to humans. Science 328, 321–326 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    van den Berg, N., Beekman, M., Smith, K. R., Janssens, A. & Slagboom, P. E. Historical demography and longevity genetics: back to the future. Ageing Res. Rev. 38, 28–39 (2017).

    PubMed  Article  Google Scholar 

  24. 24.

    Kaplanis, J. et al. Quantitative analysis of population-scale family trees with millions of relatives. Science 360, 171–175 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  25. 25.

    Hjelmborg, J. et al. Genetic influence on human lifespan and longevity. Hum. Genet. 119, 312–321 (2006).

    Article  Google Scholar 

  26. 26.

    Slagboom, P. E., van den Berg, N. & Deelen, J. Phenome and genome based studies into human ageing and longevity: An overview. Biochim. Biophys. Acta https://doi.org/10.1016/j.bbadis.2017.09.017 (2017).

  27. 27.

    Mahley, R. W. & Rall, S. C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1, 507–537 (2000).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Sebastiani, P., Nussbaum, L., Andersen, S. L., Black, M. J. & Perls, T. T. Increasing sibling relative risk of survival to older and older ages and the importance of precise definitions of “aging,” “life span,” and “longevity”. J. Gerontol. A 71, 340–346 (2016).

    Article  Google Scholar 

  29. 29.

    Nygaard, M. et al. Birth cohort differences in the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-lived individuals. Exp. Gerontol. 57, 41–46 (2014).

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Terry, D. F. et al. Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. J. Am. Geriatr. Soc. 52, 2074–2076 (2004).

    PubMed  Article  Google Scholar 

  31. 31.

    Westendorp, R. G. et al. Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study. J. Am. Geriatr. Soc. 57, 1634–1637 (2009).

    PubMed  Article  Google Scholar 

  32. 32.

    Newman, A. B. et al. Health and function of participants in the Long Life Family Study: a comparison with other cohorts. Aging (Albany NY) 3, 63–76 (2011).

    Article  Google Scholar 

  33. 33.

    Deelen, J. et al. Employing biomarkers of healthy ageing for leveraging genetic studies into human longevity. Exp. Gerontol. 82, 166–174 (2016).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Ash, A. S. et al. Are members of long-lived families healthier than their equally long-lived peers? Evidence from the Long Life Family Study. J. Gerontol. A 70, 971–976 (2015).

    Article  Google Scholar 

  35. 35.

    Beekman, M. et al. Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc. Natl Acad. Sci. USA 107, 18046–18049 (2010).

    ADS  PubMed  Article  Google Scholar 

  36. 36.

    Erikson, G. A. et al. Whole-genome sequencing of a healthy aging cohort. Cell 165, 1002–1011 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Bergman, A., Atzmon, G., Ye, K., MacCarthy, T. & Barzilai, N. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging. PLOS Comput. Biol. 3, e170 (2007).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008).

    ADS  PubMed  Article  Google Scholar 

  39. 39.

    Druley, T. E. et al. Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study. BMC Geriatr. 16, 80 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Morris, B. J., Willcox, D. C., Donlon, T. A. & Willcox, B. J. FOXO3: a major gene for human longevity—a mini-review. Gerontology 61, 515–525 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Flachsbart, F. et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc. Natl Acad. Sci. USA 106, 2700–2705 (2009). A genetic variant in FOXO3A , rs2802292, is associated with longevity in humans.

    ADS  PubMed  Article  Google Scholar 

  42. 42.

    Willcox, B. J. et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA 105, 13987–13992 (2008).

    ADS  PubMed  Article  Google Scholar 

  43. 43.

    Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Bektas, A., Schurman, S. H., Sen, R. & Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 105, 10–18 (2018).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Chahal, H. S. & Drake, W. M. The endocrine system and ageing. J. Pathol. 211, 173–180 (2007).

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part II: the aging heart in health: links to heart disease. Circulation 107, 346–354 (2003).

    PubMed  Article  Google Scholar 

  47. 47.

    Barnett, K. et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380, 37–43 (2012). Analysis of Scottish health registry data from 2007 to 2012 shows a high level of multimorbidity (two or more disorders) in those over age 65 and a 10–15 years earlier onset of multimorbidity in people living in socio-economically deprived areas, challenging the single-disease clinical framework and advocating personalized approaches.

    PubMed  Article  Google Scholar 

  48. 48.

    Crimmins, E. M., Kim, J. K. & Seeman, T. E. Poverty and biological risk: the earlier “aging” of the poor. J. Gerontol. A 64A, 286–292 (2009).

    Article  Google Scholar 

  49. 49.

    McGuigan, F. E., Bartosch, P. & Åkesson, K. E. Musculoskeletal health and frailty. Best Pract. Res. Clin. Rheumatol. 31, 145–159 (2017).

    PubMed  Article  Google Scholar 

  50. 50.

    Crimmins, E., Kim, J. K. & Vasunilashorn, S. Biodemography: new approaches to understanding trends and differences in population health and mortality. Demography 47, S41–S64 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Ensrud, K. E. et al. Frailty and risk of falls, fracture, and mortality in older women: the study of osteoporotic fractures. J. Gerontol. A 62, 744–751 (2007).

    Article  Google Scholar 

  52. 52.

    Marengoni, A. et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res. Rev. 10, 430–439 (2011).

    PubMed  Article  Google Scholar 

  53. 53.

    Guthrie, B., Makubate, B., Hernandez-Santiago, V. & Dreischulte, T. The rising tide of polypharmacy and drug–drug interactions: population database analysis 1995–2010. BMC Med. 13, 74 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Gu, Q., Dillon, C. F. & Burt, V. L. Prescription drug use continues to increase: U.S. prescription drug data for 2007–2008. NCHS Data Brief 42, 1–8 (2010).

    Google Scholar 

  55. 55.

    Bushardt, R. L., Massey, E. B., Simpson, T. W., Ariail, J. C. & Simpson, K. N. Polypharmacy: misleading, but manageable. Clin. Interv. Aging 3, 383–389 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Parameswaran Nair, N. et al. Hospitalization in older patients due to adverse drug reactions — the need for a prediction tool. Clin. Interv. Aging 11, 497–505 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Marcum, Z. A. et al. Prevalence of unplanned hospitalizations caused by adverse drug reactions in older veterans. J. Am. Geriatr. Soc. 60, 34–41 (2012).

    PubMed  Article  Google Scholar 

  58. 58.

    Howard, R. L. et al. Which drugs cause preventable admissions to hospital? A systematic review. Br. J. Clin. Pharmacol. 63, 136–147 (2007).

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Stringhini, S. et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1·7 million men and women. Lancet 389, 1229–1237 (2017). A plea to include socio-economic factors into the initiative of high income WHO member states to cut mortality due to non-communicable diseases by 25% by 2025, showing in a very large prospective multi-cohort meta-analysis study the years-of-life-lost due to high alcohol intake, physical inactivity, current smoking, hypertension, diabetes, obesity and low socio-economic status.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Harvey, J. A., Chastin, S. F. & Skelton, D. A. How Sedentary are older people? A systematic review of the amount of sedentary behavior. J. Aging Phys. Act. 23, 471–487 (2015).

    PubMed  Article  Google Scholar 

  61. 61.

    Global Action Plan for the Prevention and Control of NCDs 2013–2020. http://who.int/nmh/events/ncd_action_plan/en/ (WHO, 2013).

  62. 62.

    Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 3, 866–875 (2015).

    PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Estruch, R. et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Toledo, E. et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: a randomized clinical trial. JAMA Intern. Med. 175, 1752–1760 (2015).

    Google Scholar 

  65. 65.

    Penedo, F. J. & Dahn, J. R. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr. Opin. Psychiatry 18, 189–193 (2005).

    PubMed  Article  Google Scholar 

  66. 66.

    Heilbronn, L. K. et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. J. Am. Med. Assoc. 295, 1539–1548 (2006).

    Article  CAS  Google Scholar 

  67. 67.

    Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385, 2255–2263 (2015). A two-year proof-of-concept randomized clinical trial in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER), in which positive results are found for a multi-domain approach (diet, exercise, cognitive training and vascular risk monitoring) compared to general health advice to prevent cognitive decline in at-risk elderly people (60–77 years of age) from the general population.

    PubMed  Article  Google Scholar 

  68. 68.

    Most, J., Tosti, V., Redman, L. M. & Fontana, L. Calorie restriction in humans: an update. Ageing Res. Rev. 39, 36–45 (2017).

    PubMed  Article  Google Scholar 

  69. 69.

    Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    PubMed  Article  Google Scholar 

  70. 70.

    Laird, E. et al. The prevalence of vitamin D deficiency and the determinants of 25(OH)D concentration in older Irish adults: data from The Irish Longitudinal Study on Ageing (TILDA). J. Gerontol. A 73, 519–525 (2018).

    Article  Google Scholar 

  71. 71.

    Levine, M. E. et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 19, 407–417 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    PubMed  Article  Google Scholar 

  73. 73.

    Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Bibbins-Domingo, K. et al. Statin use for the primary prevention of cardiovascular disease in adults: US preventive services task force recommendation statement. J. Am. Med. Assoc. 316, 1997–2007 (2016).

    Article  Google Scholar 

  75. 75.

    Ahmadi, S. F. et al. Reverse epidemiology of traditional cardiovascular risk factors in the geriatric population. J. Am. Med. Dir. Assoc. 16, 933–939 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Conroy, S. P., Westendorp, R. G. J. & Witham, M. D. Hypertension treatment for older people—navigating between Scylla and Charybdis. Age Ageing (2018).

  77. 77.

    Vijg, J. Aging of the Genome: The Dual Role of DNA in Life and Death (Oxford Univ. Press, Oxford, 2007).

    Google Scholar 

  78. 78.

    Yanai, H. & Fraifeld, V. E. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res. Rev. 41, 18–33 (2018).

    PubMed  Article  Google Scholar 

  79. 79.

    Pomatto, L. C. D. & Davies, K. J. A. The role of declining adaptive homeostasis in ageing. J. Physiol. (Lond.) 595, 7275–7309 (2017).

    Article  CAS  Google Scholar 

  80. 80.

    Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A 69, S4–S9 (2014).

    Article  Google Scholar 

  81. 81.

    Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L. & de Cabo, R. Animal models of aging research: implications for human aging and age-related diseases. Annu. Rev. Anim. Biosci. 3, 283–303 (2015).

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Tiku, V. et al. Small nucleoli are a cellular hallmark of longevity. Nat. Commun. 8, 16083 (2016).

    Article  CAS  Google Scholar 

  83. 83.

    Heidinger, B. J. et al. Telomere length in early life predicts lifespan. Proc. Natl Acad. Sci. USA 109, 1743–1748 (2012).

    ADS  PubMed  Article  Google Scholar 

  84. 84.

    Varela, E., Muñoz-Lorente, M. A., Tejera, A. M., Ortega, S. & Blasco, M. A. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat. Commun. 7, 11739 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Kapahi, P., Kaeberlein, M. & Hansen, M. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res. Rev. 39, 3–14 (2017).

    PubMed  Article  Google Scholar 

  86. 86.

    Colman, R. J. et al. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 5, 3557 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318–321 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  88. 88.

    Vaughan, K. L. et al. Caloric restriction study design limitations in rodent and nonhuman primate studies. J. Gerontol. A 73, 48–53 (2018).

    Article  Google Scholar 

  89. 89.

    Pan, H. & Finkel, T. Key proteins and pathways that regulate lifespan. J. Biol. Chem. 292, 6452–6460 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Pawlikowska, L. et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8, 460–472 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    Deelen, J. et al. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age (Dordr.) 35, 235–249 (2013).

    Article  CAS  Google Scholar 

  92. 92.

    Passtoors, W. M. et al. Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12, 24–31 (2013).

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Longo, V. D. et al. Interventions to slow aging in humans: are we ready? Aging Cell 14, 497–510 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Ingram, D. K. & de Cabo, R. Calorie restriction in rodents: caveats to consider. Ageing Res. Rev. 39, 15–28 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Racette, S. B. et al. One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue. J. Gerontol. A 61, 943–950 (2006).

    Article  Google Scholar 

  98. 98.

    Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Grandison, R. C., Piper, M. D. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Manoogian, E. N. C. & Panda, S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 39, 59–67 (2017).

    PubMed  Article  Google Scholar 

  101. 101.

    Acosta-Rodriguez, V. A., de Groot, M. H. M., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 26, 267–277 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Xie, K. et al. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat. Commun. 8, 155 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Fontana, L. The science of nutritional modulation of aging. Ageing Res. Rev. 39, 1–2 (2017).

    PubMed  Article  Google Scholar 

  104. 104.

    Wei, M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 9, eaai8700 (2017). Healthy human subjects randomly allocated to a diet that mimics fasting, which is low in calories, sugars and protein, but high in unsaturated fats, as opposed to unrestricted food consumption, showed reduced body weight, trunk and total body fat, had lower blood pressure and decreased levels of IGF-1, with more marked effects in participants at risk of disease.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Newman, J. C. et al. Strategies and challenges in clinical trials targeting human aging. J. Gerontol. A 71, 1424–1434 (2016).

    Article  CAS  Google Scholar 

  107. 107.

    Blenis, J.TOR, the gateway to cellular metabolism, cell growth, and disease. Cell 171, 10–13 (2017).

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Slack, C. Ras signaling in aging and metabolic regulation. Nutr. Healthy Aging 4, 195–205 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife 5, e16351 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014). At doses that were well-tolerated, the mTOR inhibitor RAD001 enhanced the response to the influenza vaccine in elderly volunteers by about 20% and reduced the percentage of CD4 + and CD8 + T lymphocytes that expressed the programmed death-1 receptor, which inhibits T cell signalling and shows higher expression with increasing age.

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112.

    Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. 113.

    Espeland, M. A. et al. Clinical trials targeting aging and age-related multimorbidity. J. Gerontol. A 72, 355–361 (2017).

    Google Scholar 

  114. 114.

    Arriola Apelo, S. I., Pumper, C. P., Baar, E. L., Cummings, N. E. & Lamming, D. W. Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. J. Gerontol. A 71, 876–881 (2016).

    Article  CAS  Google Scholar 

  115. 115.

    Johnson, S. C. & Kaeberlein, M. Rapamycin in aging and disease: maximizing efficacy while minimizing side effects. Oncotarget 7, 44876–44878 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    PubMed  Article  CAS  Google Scholar 

  117. 117.

    Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017). Transection of the anterior cruciate ligament in mice caused accumulation of senescent cells in the articular cartilage and synovium, and selective elimination of these cells or injection of a senolytic molecule attenuated the development of osteoarthritis, reduced pain and increased cartilage development.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120.

    Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    McHugh, D. & Gil, J. Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    van Willigenburg, H., de Keizer, P. L. J. & de Bruin, R. W. F. Cellular senescence as a therapeutic target to improve renal transplantation outcome. Pharmacol. Res. 130, 322–330 (2018).

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124.

    Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. 125.

    Clark, R. I. & Walker, D. W. Role of gut microbiota in aging-related health decline: insights from invertebrate models. Cell. Mol. Life Sci. 75, 93–101 (2018).

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    PubMed  Article  CAS  Google Scholar 

  127. 127.

    Schmidt, T. S. B., Raes, J. & Bork, P. The Human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    PubMed  Article  CAS  Google Scholar 

  128. 128.

    Smith, P. et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6, e27014 (2017). Recolonizing the gut of middle-age turquoise killifish with bacteria from young, rather than middle-aged, donors extends lifespan, delays behavioural decline and prevents the changes in the microbiome associated with host ageing.

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  130. 130.

    Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619 (2017).

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    PubMed  Article  CAS  Google Scholar 

  132. 132.

    Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017). Treatment with human umbilical cord plasma revitalizes the hippocampus and improves cognitive function in mice, which is (partially) driven by TIMP2.

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133.

    Casey, J. A., Schwartz, B. S., Stewart, W. F. & Adler, N. E. Using electronic health records for population health research: a review of methods and applications. Annu. Rev. Public Health 37, 61–81 (2016).

    PubMed  Article  Google Scholar 

  134. 134.

    Stott, D. J. et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N. Engl. J. Med. 376, 2534–2544 (2017).

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015). Direct conversion of human fibroblasts into induced neurons shows that these cells retain their age-related transcriptional profiles, and demonstrates the potential of direct reprogramming for in vitro modelling of ageing.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. 136.

    Hu, J. L., Todhunter, M. E., LaBarge, M. A. & Gartner, Z. J. Opportunities for organoids as new models of aging. J. Cell Biol. 217, 39–50 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. 137.

    Swerdlow, D. I. et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int. J. Epidemiol. 45, 1600–1616 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Ainsworth, H. F., Shin, S. Y. & Cordell, H. J. A comparison of methods for inferring causal relationships between genotype and phenotype using additional biological measurements. Genet. Epidemiol. 41, 577–586 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    PubMed  Article  CAS  Google Scholar 

  140. 140.

    Schrauwen-Hinderling, V. B. & Schols, A. M. W. J. Imaging in metabolic research: challenges and opportunities. J. Appl. Physiol. 124, 160–161 (2018).

    Article  Google Scholar 

  141. 141.

    Sebastiani, P. et al. Four genome-wide association studies identify new extreme longevity variants. J. Gerontol. A 72, 1453–1464 (2017).

    Article  Google Scholar 

  142. 142.

    Deelen, J. et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum. Mol. Genet. 23, 4420–4432 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Pilling, L. C. et al. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging (Albany NY) 9, 2504–2520 (2017).

    Google Scholar 

  144. 144.

    Joshi, P. K. et al. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nat. Commun. 8, 910 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. 145.

    Zeng, Y. et al. Novel loci and pathways significantly associated with longevity. Sci. Rep. 6, 21243 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  146. 146.

    Broer, L. et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J. Gerontol. A 70, 110–118 (2015).

    Article  CAS  Google Scholar 

  147. 147.

    Flachsbart, F. et al. Immunochip analysis identifies association of the RAD50/IL13 region with human longevity. Aging Cell 15, 585–588 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  148. 148.

    Anderson, R., Richardson, G. D. & Passos, J. F. Mechanisms driving the ageing heart. Exp. Gerontol. https://doi.org/10.1016/j.exger.2017.10.015 (2017).

  149. 149.

    Meiners, S., Eickelberg, O. & Königshoff, M. Hallmarks of the ageing lung. Eur. Respir. J. 45, 807–827 (2015).

    PubMed  Article  CAS  Google Scholar 

  150. 150.

    van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 7, 11115 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Slieker, R. C. et al. Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biol. 17, 191 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 152.

    Declerck, K. & Vanden Berghe, W. Back to the future: epigenetic clock plasticity towards healthy aging. Mech. Ageing Dev. https://doi.org/10.1016/j.mad.2018.01.002 (2018).

  153. 153.

    Frake, R. A., Ricketts, T., Menzies, F. M. & Rubinsztein, D. C. Autophagy and neurodegeneration. J. Clin. Invest. 125, 65–74 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Sharples, A. P. et al. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14, 511–523 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. 155.

    Wahl, D. et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res. Rev. 31, 80–92 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156.

    Sterky, F. H., Lee, S., Wibom, R., Olson, L. & Larsson, N. G. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl Acad. Sci. USA 108, 12937–12942 (2011).

    ADS  PubMed  Article  Google Scholar 

  157. 157.

    Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011).

    PubMed  Article  CAS  Google Scholar 

  158. 158.

    Beijers, R. J. H. C. G., Gosker, H. R. & Schols, A. M. W. J. Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr. Opin. Clin. Nutr. Metab. Care 21, 138–144 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. 159.

    Robinson, M. M. et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 25, 581–592 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  160. 160.

    Sturmlechner, I., Durik, M., Sieben, C. J., Baker, D. J. & van Deursen, J. M. Cellular senescence in renal ageing and disease. Nat. Rev. Nephrol. 13, 77–89 (2017).

    PubMed  Article  CAS  Google Scholar 

  161. 161.

    Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. Science 350, 1199–1204 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  162. 162.

    de Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. Blood 131, 479–487 (2018).

    PubMed  Article  CAS  Google Scholar 

  163. 163.

    Čamernik, K. et al. Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev. 14, 346–369 (2018).

    PubMed  Article  CAS  Google Scholar 

  164. 164.

    van den Akker, E. B. et al. Uncompromised 10-year survival of oldest old carrying somatic mutations in DNMT3A and TET2. Blood 127, 1512–1515 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  165. 165.

    WHO. Disease Burden and Mortality Estimates: Disease Burden, 2000–2016 http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html (WHO, 2018).

  166. 166.

    Walter, S. et al. A genome-wide association study of aging. Neurobiol. Aging 32, 2109.e15–2109.e28 (2011).

    Article  CAS  Google Scholar 

  167. 167.

    Schächter, F. et al. Genetic associations with human longevity at the APOE and ACE loci. Nat. Genet. 6, 29–32 (1994). Genetic variants in ApoE are associated with longevity in humans, one of these variants, the ApoE ε4 allele, shows a deleterious effect whereas the other, the ApoE ε2 allele, has a protective effect.

    PubMed  Article  Google Scholar 

  168. 168.

    Budovsky, A. et al. LongevityMap: a database of human genetic variants associated with longevity. Trends Genet. 29, 559–560 (2013).

    PubMed  Article  CAS  Google Scholar 

  169. 169.

    Jeck, W. R., Siebold, A. P. & Sharpless, N. E. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11, 727–731 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  170. 170.

    Tazearslan, C., Huang, J., Barzilai, N. & Suh, Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell 10, 551–554 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. 171.

    Johnson, T. E. Recent results: biomarkers of aging. Exp. Gerontol. 41, 1243–1246 (2006).

    PubMed  Article  CAS  Google Scholar 

  172. 172.

    Lara, J. et al. A proposed panel of biomarkers of healthy ageing. BMC Med. 13, 222 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A 56, M146–M157 (2001). The Fried criteria were among the earliest multi-domain definitions to index frailty, including shrinking (weight loss), muscle weakness (handgrip strength), poor endurance (self-reported exhaustion), slowness (gait speed) and low physical activity (kcal expended per week), estimated in community-dwelling people over 65 years, and this definition of frailty is now widely used in large epidemiological and clinical studies and formed the basis for the development of novel indexes to predict elderly people who have a higher risk of incidences of disease, hospitalization, falls, disability and mortality.

    Article  CAS  Google Scholar 

  174. 174.

    Mitnitski, A. B., Mogilner, A. J. & Rockwood, K. Accumulation of deficits as a proxy measure of aging. Sci. World J. 1, 323–336 (2001).

    Article  CAS  Google Scholar 

  175. 175.

    Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  176. 176.

    Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013). A combination of CpG methylation sites (epigenetic clock) is associated with chronological ageing of multiple tissues and cell types and can be used to estimate the biological age of a person.

    PubMed  PubMed Central  Article  Google Scholar 

  177. 177.

    Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    PubMed  Article  CAS  Google Scholar 

  178. 178.

    Hertel, J. et al. Measuring biological age via metabonomics: the metabolic age score. J. Proteome Res. 15, 400–410 (2016).

    PubMed  Article  CAS  Google Scholar 

  179. 179.

    Cole, J. H. et al. Brain age predicts mortality. Mol. Psychiatry 23, 1385–1392 (2018).

    PubMed  Article  CAS  Google Scholar 

  180. 180.

    Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological age predictors. EBioMedicine 21, 29–36 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank N. van den Berg for help with the preparation of Fig. 1 and N. Chaturvedi and B. J. Zwaan for their critical reading of the manuscript. L.P. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (no. 741989) and a Wellcome Trust Strategic Award. J.D. acknowledges support from the Alexander von Humboldt Foundation. We apologize to the authors of many relevant studies for not citing their work owing to space limitations.

Reviewer information

Nature thanks V. D. Longo and J. Vijg for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All authors contributed to the design and writing of the Review.

Corresponding authors

Correspondence to Linda Partridge or P. Eline Slagboom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Partridge, L., Deelen, J. & Slagboom, P.E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018). https://doi.org/10.1038/s41586-018-0457-8

Download citation

Keywords

  • Healthspan
  • Senescent Cells
  • Late-life Diseases
  • Senescence-associated Secretory Phenotype (SASP)
  • American Federation For Aging Research (AFAR)

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing