Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genome of the offspring of a Neanderthal mother and a Denisovan father

Abstract

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of ‘Denisova 11’, a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4,5,6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal–Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of Neanderthals, Denisovans and ancient modern humans dated to approximately 40 ka or earlier.
Fig. 2: Denisova 11 has both Neanderthal and Denisovan ancestry.
Fig. 3: Distribution of Neanderthal-like and Denisovan-like alleles across the Denisova 11 genome.
Fig. 4: Relationships and gene flow events between Neanderthal and Denisovan populations inferred from genome sequences.

Similar content being viewed by others

References

  1. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article  ADS  CAS  Google Scholar 

  2. Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).

    Article  ADS  Google Scholar 

  3. Brown, S. et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci. Rep. 6, 23559 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010).

    Article  ADS  CAS  Google Scholar 

  5. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  ADS  CAS  Google Scholar 

  6. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  ADS  CAS  Google Scholar 

  7. Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018).

    Article  ADS  CAS  Google Scholar 

  8. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  ADS  Google Scholar 

  9. Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    Article  ADS  CAS  Google Scholar 

  10. Vandermeersch, B. & Garralda, M. D. in Continuity and Discontinuity in the Peopling of Europe: One Hundred Fifty Years of Neanderthal Study (eds Condemi, S. & Weniger, G.-C.) 113–125 (Springer, Dordrecht, 2011).

  11. Sawyer, S. et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc. Natl Acad. Sci. USA 112, 15696–15700 (2015).

    Article  ADS  CAS  Google Scholar 

  12. Slon, V. et al. A fourth Denisovan individual. Sci. Adv. 3, e1700186 (2017).

    Article  ADS  Google Scholar 

  13. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  ADS  CAS  Google Scholar 

  14. Kuhlwilm, M. et al. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature 530, 429–433 (2016).

    Article  ADS  CAS  Google Scholar 

  15. Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

    Article  ADS  CAS  Google Scholar 

  16. Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011).

    Article  ADS  CAS  Google Scholar 

  17. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    Article  CAS  Google Scholar 

  18. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article  ADS  CAS  Google Scholar 

  19. Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

    Article  Google Scholar 

  20. Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article  Google Scholar 

  21. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    Article  ADS  CAS  Google Scholar 

  22. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    Article  ADS  CAS  Google Scholar 

  23. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article  ADS  CAS  Google Scholar 

  24. Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 27, 3202–3208 (2017).

    Article  CAS  Google Scholar 

  25. Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

    Article  ADS  CAS  Google Scholar 

  26. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  ADS  CAS  Google Scholar 

  27. Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).

    Article  ADS  CAS  Google Scholar 

  28. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Article  ADS  CAS  Google Scholar 

  29. Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13, 745–753 (2012).

    Article  CAS  Google Scholar 

  30. Slon, V. et al. Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to Middle Pleistocene specimens from Qesem Cave (Israel). Quat. Int. 398, 210–218 (2016).

    Article  Google Scholar 

  31. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article  CAS  Google Scholar 

  32. Dabney, J. & Meyer, M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 52, 87–94 (2012).

    Article  CAS  Google Scholar 

  33. DeAngelis, M. M., Wang, D. G. & Hawkins, T. L. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 23, 4742–4743 (1995).

    Article  CAS  Google Scholar 

  34. Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    Article  ADS  CAS  Google Scholar 

  35. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5448 (2010).

  36. Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014).

    Article  Google Scholar 

  37. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  38. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Schellbach and A. Weihmann for DNA sequencing; G. Renaud and U. Stenzel for data processing; F. Brock for the computed tomography scans; R. Barr, P. Korlević and C. Zickert for graphics; and M. Slatkin and L. Vigilant for comments on the manuscript. This work was funded by the Max Planck Society; the Max Planck Foundation (grant 31-12LMP Pääbo to S.Pä.); the European Research Council (grant agreements 694707 to S.Pä., 324139 (PalaeoChron) to T.H. and 715069 (FINDER) to K.D.); and the Russian Science Foundation (project no. 14-50-00036 to M.B.K., M.V.S. and A.P.D.).

Reviewer information

Nature thanks D. Lambert, R. Nielsen and C. Stringer for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

V.S. and S.N. performed the laboratory work; V.S., F.M., B.Ve., C.d.F., S.G., M.H., S.Pe., J.K., M.M., K.P. and S.Pä. analysed the genetic data; B.Vi. carried out the morphological analysis; S.B., K.D., T.H., M.B.K., M.V.S. and A.P.D. discovered Denisova 11 and provided archaeological data; V.S., K.P. and S.Pä. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Viviane Slon or Svante Pääbo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparison between cortical thickness of long bones from modern humans, Neanderthals and Denisova 11.

Maximum cortical thickness of femora, tibiae, humeri, radii and ulnae from humans from the Bronze Age and two Neanderthals compared to the minimum thickness of Denisova 11 (dashed line).

Extended Data Fig. 2 Comparison of the genome of Denisova 11 and simulated genomes.

Percentage of sites at which Denisova 11 and genomes simulated under the demographic model described in Supplementary Information 6 carry two Neanderthal alleles (NN, blue), two Denisovan alleles (DD, red) or one allele of each type (ND, purple). a, Percentages calculated for two random DNA fragments from Denisova 11 and from simulated F1, F2, Neanderthal (NF0) or Denisovan (DF0) genomes. b, Proportions of sites for the simulated genotypes, before sampling two fragments.

Extended Data Fig. 3 Neanderthal and Denisovan allele proportions from Denisova 11 in 1-Mb windows.

The y axis shows −log(P) of the deviation of Neanderthal and Denisovan allele counts from the genome-wide average (χ2 test of goodness-of-fit; see Supplementary Information 7). The colour shows the proportion of alleles matching the Neanderthal state (%N) within each 1-Mb window (100-kb steps, n = 26,414 windows).

Extended Data Table 1 DNA extracts and DNA libraries prepared from the Denisova 11 specimen

Supplementary information

Supplementary Information

This file contains Supplementary Information sections 1-8, including Supplementary Text, Figures and Tables and Supplementary References. See contents page for details.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slon, V., Mafessoni, F., Vernot, B. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018). https://doi.org/10.1038/s41586-018-0455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0455-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing