Letter | Published:

Synthetic three-dimensional atomic structures assembled atom by atom

Naturevolume 561pages7982 (2018) | Download Citation

Abstract

A great challenge in current quantum science and technology research is to realize artificial systems of a large number of individually controlled quantum bits for applications in quantum computing and quantum simulation. Many experimental platforms are being explored, including solid-state systems, such as superconducting circuits1 or quantum dots2, and atomic, molecular and optical systems, such as photons, trapped ions or neutral atoms3,4,5,6,7. The latter offer inherently identical qubits that are well decoupled from the environment and could provide synthetic structures scalable to hundreds of qubits or more8. Quantum-gas microscopes9 allow the realization of two-dimensional regular lattices of hundreds of atoms, and large, fully loaded arrays of about 50 microtraps (or ‘optical tweezers’) with individual control are already available in one10 and two11 dimensions. Ultimately, however, accessing the third dimension while keeping single-atom control will be required, both for scaling to large numbers and for extending the range of models amenable to quantum simulation. Here we report the assembly of defect-free, arbitrarily shaped three-dimensional arrays, containing up to 72 single atoms. We use holographic methods and fast, programmable moving tweezers to arrange—atom by atom and plane by plane—initially disordered arrays into target structures of almost any geometry. These results present the prospect of quantum simulation with tens of qubits arbitrarily arranged in space and show that realizing systems of hundreds of individually controlled qubits is within reach using current technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

  2. 2.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

  3. 3.

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  4. 4.

    Buluta, S. A. I. & Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011).

  5. 5.

    Meschede, D. & Rauschenbeutel, A. Manipulating single atoms. Adv. At. Mol. Opt. Phys. 53, 75–104 (2006).

  6. 6.

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

  7. 7.

    Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

  8. 8.

    Weiss, D. S. & Saffman, M. Quantum computing with neutral atoms. Phys. Today 70, 44–50 (2017).

  9. 9.

    Kuhr, S. Quantum-gas microscopes: a new tool for cold-atom quantum simulators. Natl Sci. Rev. 3, 170–172 (2016).

  10. 10.

    Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

  11. 11.

    Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

  12. 12.

    Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556–560 (2007).

  13. 13.

    Wang, Y., Zhang, X., Corcovilos, T. A., Kumar, A. & Weiss, D. S. Coherent addressing of individual neutral atoms in a 3D optical lattice. Phys. Rev. Lett. 115, 043003 (2015).

  14. 14.

    Nogrette, F. et al. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X 4, 021034 (2014).

  15. 15.

    Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

  16. 16.

    Sturm, M. R., Schlosser, M., Walser, R. & Birkl, G. Quantum simulators by design: many-body physics in reconfigurable arrays of tunnel-coupled traps. Phys. Rev. A 95, 063625 (2017).

  17. 17.

    Di Leonardo, R., Ianni, F. & Ruocco, G. Computer generation of optimal holograms for optical trap arrays. Opt. Express 15, 1913–1922 (2007).

  18. 18.

    Wallis, J. W., Miller, T. R., Lerner, C. A. & Kleerup, E. C. Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8, 297–303 (1989).

  19. 19.

    Beugeling, W., Quelle, A. & Morais Smith, C. Nontrivial topological states on a Möbius band. Phys. Rev. B 89, 235112 (2014).

  20. 20.

    Rüegg, A., Cof, S. & Moore, J. E. Corner states of topological fullerenes. Phys. Rev. B 88, 155127 (2013).

  21. 21.

    Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

  22. 22.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

  23. 23.

    Bramwell, S. T. & Gringas, M. J. P. Spin ice state in frustrated magnetic pyroclore materials. Science 294, 1495–1501 (2001).

  24. 24.

    Łacki, M. et al. Quantum Hall physics with cold atoms in cylindrical optical lattices. Phys. Rev. A 93, 013604 (2016).

  25. 25.

    Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

  26. 26.

    Browaeys, A., Barredo, D. & Lahaye, T. Experimental investigations of dipole–dipole interactions between a few Rydberg atoms. J. Phys. B 49, 152001 (2016).

  27. 27.

    Vitanov, N. V., Rangelov, A. A., Shore, B. W. & Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).

  28. 28.

    de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Optical control of the resonant dipole–dipole interaction between Rydberg atoms. Phys. Rev. Lett. 119, 053202 (2017).

  29. 29.

    Barredo, D. et al. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).

  30. 30.

    Weber, S. et al. Topologically protected edge states in small Rydberg systems. Quantum Sci. Technol. 3, 044001 (2018).

  31. 31.

    Lee, W., Kim, H. & Ahn, J. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps. Opt. Express 24, 9816–9825 (2016).

  32. 32.

    Grünzweig, T., Hilliard, A., McGoven, M. & Andersen, M. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys. 6, 951–954 (2010).

  33. 33.

    Lester, B. J., Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. Rapid production of uniformally filled arrays of neutral atoms. Phys. Rev. Lett. 115, 073003 (2015).

Download references

Acknowledgements

We thank A. Läuchli for discussions. This work benefited from financial support by the EU (H2020 FET-PROACT Project RySQ), by the ‘PALM’ Labex (projects QUANTICA and XYLOS) and by the Région Île-de-France in the framework of DIM Nano-K.

Reviewer information

Nature thanks W. Bakr, N. Lundblad and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Author notes

  1. These authors contributed equally: Daniel Barredo, Vincent Lienhard, Sylvain de Léséleuc

Affiliations

  1. Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France

    • Daniel Barredo
    • , Vincent Lienhard
    • , Sylvain de Léséleuc
    • , Thierry Lahaye
    •  & Antoine Browaeys

Authors

  1. Search for Daniel Barredo in:

  2. Search for Vincent Lienhard in:

  3. Search for Sylvain de Léséleuc in:

  4. Search for Thierry Lahaye in:

  5. Search for Antoine Browaeys in:

Contributions

D.B., V.L. and S.d.L. performed the experiments. T.L. and A.B. supervised the work. All authors made critical contributions to the work, discussed the results and contributed to the writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Daniel Barredo.

Source data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0450-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.