Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthetic three-dimensional atomic structures assembled atom by atom

Abstract

A great challenge in current quantum science and technology research is to realize artificial systems of a large number of individually controlled quantum bits for applications in quantum computing and quantum simulation. Many experimental platforms are being explored, including solid-state systems, such as superconducting circuits1 or quantum dots2, and atomic, molecular and optical systems, such as photons, trapped ions or neutral atoms3,4,5,6,7. The latter offer inherently identical qubits that are well decoupled from the environment and could provide synthetic structures scalable to hundreds of qubits or more8. Quantum-gas microscopes9 allow the realization of two-dimensional regular lattices of hundreds of atoms, and large, fully loaded arrays of about 50 microtraps (or ‘optical tweezers’) with individual control are already available in one10 and two11 dimensions. Ultimately, however, accessing the third dimension while keeping single-atom control will be required, both for scaling to large numbers and for extending the range of models amenable to quantum simulation. Here we report the assembly of defect-free, arbitrarily shaped three-dimensional arrays, containing up to 72 single atoms. We use holographic methods and fast, programmable moving tweezers to arrange—atom by atom and plane by plane—initially disordered arrays into target structures of almost any geometry. These results present the prospect of quantum simulation with tens of qubits arbitrarily arranged in space and show that realizing systems of hundreds of individually controlled qubits is within reach using current technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup and trap images.
Fig. 2: Single-atom fluorescence in 3D arrays.
Fig. 3: Fully loaded 3D arrays of single atoms.
Fig. 4: Spin-exchange dynamics between two Rydberg atoms in different z layers.

Similar content being viewed by others

References

  1. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  CAS  Google Scholar 

  4. Buluta, S. A. I. & Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011).

    Article  ADS  CAS  Google Scholar 

  5. Meschede, D. & Rauschenbeutel, A. Manipulating single atoms. Adv. At. Mol. Opt. Phys. 53, 75–104 (2006).

    Article  ADS  CAS  Google Scholar 

  6. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  CAS  Google Scholar 

  7. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Weiss, D. S. & Saffman, M. Quantum computing with neutral atoms. Phys. Today 70, 44–50 (2017).

    Article  CAS  Google Scholar 

  9. Kuhr, S. Quantum-gas microscopes: a new tool for cold-atom quantum simulators. Natl Sci. Rev. 3, 170–172 (2016).

    Article  CAS  Google Scholar 

  10. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  11. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556–560 (2007).

    Article  CAS  Google Scholar 

  13. Wang, Y., Zhang, X., Corcovilos, T. A., Kumar, A. & Weiss, D. S. Coherent addressing of individual neutral atoms in a 3D optical lattice. Phys. Rev. Lett. 115, 043003 (2015).

    Article  ADS  PubMed  Google Scholar 

  14. Nogrette, F. et al. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X 4, 021034 (2014).

    Google Scholar 

  15. Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sturm, M. R., Schlosser, M., Walser, R. & Birkl, G. Quantum simulators by design: many-body physics in reconfigurable arrays of tunnel-coupled traps. Phys. Rev. A 95, 063625 (2017).

    Article  ADS  Google Scholar 

  17. Di Leonardo, R., Ianni, F. & Ruocco, G. Computer generation of optimal holograms for optical trap arrays. Opt. Express 15, 1913–1922 (2007).

    Article  ADS  PubMed  Google Scholar 

  18. Wallis, J. W., Miller, T. R., Lerner, C. A. & Kleerup, E. C. Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8, 297–303 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. Beugeling, W., Quelle, A. & Morais Smith, C. Nontrivial topological states on a Möbius band. Phys. Rev. B 89, 235112 (2014).

    Article  ADS  CAS  Google Scholar 

  20. Rüegg, A., Cof, S. & Moore, J. E. Corner states of topological fullerenes. Phys. Rev. B 88, 155127 (2013).

    Article  ADS  CAS  Google Scholar 

  21. Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  22. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  CAS  Google Scholar 

  23. Bramwell, S. T. & Gringas, M. J. P. Spin ice state in frustrated magnetic pyroclore materials. Science 294, 1495–1501 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Łacki, M. et al. Quantum Hall physics with cold atoms in cylindrical optical lattices. Phys. Rev. A 93, 013604 (2016).

    Article  ADS  CAS  Google Scholar 

  25. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  CAS  Google Scholar 

  26. Browaeys, A., Barredo, D. & Lahaye, T. Experimental investigations of dipole–dipole interactions between a few Rydberg atoms. J. Phys. B 49, 152001 (2016).

    Article  ADS  CAS  Google Scholar 

  27. Vitanov, N. V., Rangelov, A. A., Shore, B. W. & Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).

    Article  ADS  Google Scholar 

  28. de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Optical control of the resonant dipole–dipole interaction between Rydberg atoms. Phys. Rev. Lett. 119, 053202 (2017).

    Article  ADS  PubMed  Google Scholar 

  29. Barredo, D. et al. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  30. Weber, S. et al. Topologically protected edge states in small Rydberg systems. Quantum Sci. Technol. 3, 044001 (2018).

    Article  ADS  Google Scholar 

  31. Lee, W., Kim, H. & Ahn, J. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps. Opt. Express 24, 9816–9825 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Grünzweig, T., Hilliard, A., McGoven, M. & Andersen, M. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys. 6, 951–954 (2010).

    Article  CAS  Google Scholar 

  33. Lester, B. J., Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. Rapid production of uniformally filled arrays of neutral atoms. Phys. Rev. Lett. 115, 073003 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Läuchli for discussions. This work benefited from financial support by the EU (H2020 FET-PROACT Project RySQ), by the ‘PALM’ Labex (projects QUANTICA and XYLOS) and by the Région Île-de-France in the framework of DIM Nano-K.

Reviewer information

Nature thanks W. Bakr, N. Lundblad and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

D.B., V.L. and S.d.L. performed the experiments. T.L. and A.B. supervised the work. All authors made critical contributions to the work, discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Daniel Barredo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barredo, D., Lienhard, V., de Léséleuc, S. et al. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018). https://doi.org/10.1038/s41586-018-0450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0450-2

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing