Letter | Published:

The gravitationally unstable gas disk of a starburst galaxy 12 billion years ago

Naturevolume 560pages613616 (2018) | Download Citation


Galaxies in the early Universe that are bright at submillimetre wavelengths (submillimetre-bright galaxies) are forming stars at a rate roughly 1,000 times higher than the Milky Way. A large fraction of the new stars form in the central kiloparsec of the galaxy1,2,3, a region that is comparable in size to the massive, quiescent galaxies found at the peak of cosmic star-formation history4 and the cores of present-day giant elliptical galaxies. The physical and kinematic properties inside these compact starburst cores are poorly understood because probing them at relevant spatial scales requires extremely high angular resolution. Here we report observations with a linear resolution of 550 parsecs of gas and dust in an unlensed, submillimetre-bright galaxy at a redshift of z = 4.3, when the Universe was less than two billion years old. We resolve the spatial and kinematic structure of the molecular gas inside the heavily dust-obscured core and show that the underlying gas disk is clumpy and rotationally supported (that is, its rotation velocity is larger than the velocity dispersion). Our analysis of the molecular gas mass per unit area suggests that the starburst disk is gravitationally unstable, which implies that the self-gravity of the gas is stronger than the differential rotation of the disk and the internal pressure due to stellar-radiation feedback. As a result of the gravitational instability in the disk, the molecular gas would be consumed by star formation on a timescale of 100 million years, which is comparable to gas depletion times in merging starburst galaxies5.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Swinbank, A. M. et al. Intense star formation within resolved compact regions in a galaxy at z = 2.3. Nature 464, 733–736 (2010).

  2. 2.

    Ikarashi, S. et al. Compact starbursts in z ~ 3–6 submillimeter galaxies revealed by ALMA. Astrophys. J. 810, 133 (2015).

  3. 3.

    Simpson, J. M. et al. The SCUBA-2 cosmology legacy survey: ALMA resolves the rest-frame far-infrared emission of sub-millimeter galaxies. Astrophys. J. 799, 81 (2015).

  4. 4.

    van Dokkum, P. et al. Forming compact massive galaxies. Astrophys. J. 813, 23 (2015).

  5. 5.

    Kennicutt, R. C. Jr. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

  6. 6.

    Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998).

  7. 7.

    Barger, A. J. et al. Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift. Nature 394, 248–251 (1998).

  8. 8.

    Chapman, S. C. et al. A redshift survey of the submillimeter galaxy population. Astrophys. J. 622, 772–796 (2005).

  9. 9.

    Bothwell, M. S. et al. A survey of molecular gas in luminous sub-millimetre galaxies. Mon. Not. R. Astron. Soc. 429, 3047–3067 (2013).

  10. 10.

    Ivison, R. J. et al. Herschel-ATLAS: a binary HyLIRG pinpointing a cluster of starbursting protoellipticals. Astrophys. J. 772, 137 (2013).

  11. 11.

    Tacconi, L. J. et al. Submillimeter galaxies at z ~ 2: evidence for major mergers and constraints on lifetimes, IMF, and CO-H2 conversion factor. Astrophys. J. 680, 246–262 (2008).

  12. 12.

    Hodge, J. A. et al. Evidence for a clumpy, rotating gas disk in a submillimeter galaxy at z = 4. Astrophys. J. 760, 11 (2012).

  13. 13.

    Iono, D. et al. Clumpy and extended starbursts in the brightest unlensed submillimeter galaxies. Astrophys. J. 829, L10 (2016).

  14. 14.

    Tadaki, K.-i. et al. Bulge-forming galaxies with an extended rotating disk at z ~ 2. Astrophys. J. 834, 135 (2017).

  15. 15.

    Swinbank, A. M. et al. ALMA resolves the properties of star-forming regions in a dense gas disk at z ~ 3. Astrophys. J. 806, L17 (2015).

  16. 16.

    Sharda, P. et al. Testing star formation laws in a starburst galaxy at redshift 3 resolved with ALMA. Mon. Not. R. Astron. Soc. 477, 4380–4390 (2018).

  17. 17.

    Bolatto, A. D. et al. The resolved properties of extragalactic giant molecular clouds. Astrophys. J. 686, 948–965 (2008).

  18. 18.

    Cappellari, M. Structure and kinematics of early-type galaxies from integral field spectroscopy. Annu. Rev. Astron. Astrophys. 54, 597–665 (2016).

  19. 19.

    Veale, M. et al. The MASSIVE survey – V. Spatially resolved stellar angular momentum, velocity dispersion, and higher moments of the 41 most massive local early-type galaxies. Mon. Not. R. Astron. Soc. 464, 356–384 (2017).

  20. 20.

    Naab, T. et al. The ATLAS3D project – XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators. Mon. Not. R. Astron. Soc. 444, 3357–3387 (2014).

  21. 21.

    Genzel, R. et al. The Sins survey of z ~ 2 galaxy kinematics: properties of the giant star-forming clumps. Astrophys. J. 733, 101 (2011).

  22. 22.

    Bournaud, F. et al. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high-redshift. Astrophys. J. 780, 57–75 (2014).

  23. 23.

    Mandelker, N. et al. The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival. Mon. Not. R. Astron. Soc. 443, 3675–3702 (2014).

  24. 24.

    Genzel, R. et al. The SINS/zC-SINF survey of z ~ 2 galaxy kinematics: evidence for gravitational quenching. Astrophys. J. 785, 75 (2014).

  25. 25.

    Thompson, T. et al. Radiation pressure-supported starburst disks and active galactic nucleus fueling. Astrophys. J. 630, 167–185 (2005).

  26. 26.

    Cacciato, M. et al. Evolution of violent gravitational disc instability in galaxies: late stabilization by transition from gas to stellar dominance. Mon. Not. R. Astron. Soc. 421, 818–831 (2012).

  27. 27.

    Tacconi, L. J. et al. Phibss: molecular gas content and scaling relations in z ~ 1–3 massive, main-sequence star-forming galaxies. Astrophys. J. 768, 74 (2013).

  28. 28.

    Narayanan, D. et al. The star-forming molecular gas in high-redshift submillimetre galaxies. Mon. Not. R. Astron. Soc. 400, 1919–1935 (2009).

  29. 29.

    Ueda, J. et al. Cold molecular gas in merger remnants. I. Formation of molecular gas disks. Astrophys. J. Suppl. Ser. 214, 1 (2014).

  30. 30.

    Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009).

  31. 31.

    Scott, K. B. et al. AzTEC millimetre survey of the COSMOS field – I. Data reduction and source catalogue. Mon. Not. R. Astron. Soc. 385, 2225–2238 (2008).

  32. 32.

    Yun, M. S. et al. Early science with the Large Millimeter Telescope: CO and [C ii] emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1). Mon. Not. R. Astron. Soc. 454, 3485–3499 (2015).

  33. 33.

    Toft, S. et al. Submillimeter galaxies as progenitors of compact quiescent galaxies. Astrophys. J. 782, 68 (2014).

  34. 34.

    Chabrier, G. The galactic disk mass function: reconciliation of the Hubble Space Telescope and nearby determinations. Astrophys. J. 586, L133–L136 (2003).

  35. 35.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).

  36. 36.

    Smolčić, V. et al. The redshift and nature of AzTEC/COSMOS 1: a starburst galaxy at z = 4.6. Astrophys. J. 731, L27 (2011).

  37. 37.

    Laigle, C. et al. The COSMOS2015 catalog: exploring the 1 < z < 6 universe with half a million galaxies. Astrophys. J. Suppl. Ser. 24, 224 (2016).

  38. 38.

    Roseboom, I. G. et al. The Herschel multi-tiered extragalactic survey: SPIRE-mm photometric redshifts. Mon. Not. R. Astron. Soc. 419, 2758–2773 (2012).

  39. 39.

    Oliver, S. J. et al. The Herschel multi-tiered extragalactic survey: HerMES. Mon. Not. R. Astron. Soc. 424, 1614–1635 (2012).

  40. 40.

    Smolčić, V. et al. The VLA-COSMOS 3 GHz large project: continuum data and source catalog release. Astron. Astrophys. 602, A1 (2017).

  41. 41.

    da Cunha, E., Charlot, S. & Elbaz, D. A simple model to interpret the ultraviolet, optical and infrared emission from galaxies. Mon. Not. R. Astron. Soc. 388, 1595–1617 (2008).

  42. 42.

    da Cunha, E. et al. An ALMA survey of sub-millimeter galaxies in the extended Chandra deep field south: physical properties derived from ultraviolet-to-radio modeling. Astrophys. J. 806, 110 (2015).

  43. 43.

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

  44. 44.

    Papadopoulos, P. P., Thi, W.-F. & Viti, S. C i lines as tracers of molecular gas, and their prospects at high redshifts. Mon. Not. R. Astron. Soc. 351, 147–160 (2004).

  45. 45.

    Weiß, A. et al. Gas and dust in the Cloverleaf quasar at redshift 2.5. Astron. Astrophys. 409, L41–L45 (2003).

  46. 46.

    Weiß, A. et al. Atomic carbon at redshift ~2.5. Astron. Astrophys. 429, L25–L28 (2005).

  47. 47.

    Danielson, A. L. R. et al. The properties of the interstellar medium within a star-forming galaxy at z = 2.3. Mon. Not. R. Astron. Soc. 410, 1687–1702 (2011).

  48. 48.

    Bothwell, M. S. et al. ALMA observations of atomic carbon in z ~ 4 dusty star-forming galaxies. Mon. Not. R. Astron. Soc. 466, 2825–2841 (2017).

  49. 49.

    White, G. J. et al. CO and C i maps of the starburst galaxy M 82. Astron. Astrophys. 284, L23–L26 (1994).

  50. 50.

    Wilson, C. et al. Luminous infrared galaxies with the submillimeter array. I. Survey overview and the central gas to dust ratio. Astrophys. J. Suppl. Ser. 178, 189–224 (2008).

  51. 51.

    Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

  52. 52.

    Downes, D. & Solomon, P. M. Rotating nuclear rings and extreme starbursts in ultraluminous galaxies. Astrophys. J. 507, 615–654 (1998).

  53. 53.

    Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).

  54. 54.

    Bournaud, F. et al. Modeling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies. Astron. Astrophys. 575, A56 (2015).

  55. 55.

    Bouche, N. et al. GalPak3D: a Bayesian parametric tool for extracting morphokinematics of galaxies from 3D data. Astrophys. J. 150, 92 (2015).

  56. 56.

    Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

  57. 57.

    Wang, B. et al. Gravitational instability and disk star formation. Astrophys. J. 427, 759–769 (1994).

  58. 58.

    Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn, 494–496 (Princeton Univ. Press, Princeton, 2008).

  59. 59.

    Romeo, A. B. & Wiegert, J. The effective stability parameter for two-component galactic discs: is \({Q}^{-1}\approx {Q}_{{\rm{stars}}}^{-1}+{Q}_{{\rm{gas}}}^{-1}\)? Mon. Not. R. Astron. Soc. 416, 1191–1196 (2011).

Download references


We thank J. Baba for discussions about a gravitational instability in SMGs. This work was supported by JSPS KAKENHI JP17J04449. We thank the ALMA staff and in particular the EA-ARC staff for their support. This research has made use of data from ALMA and HerMES project (http://hermes.sussex.ac.uk/). ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (South Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. HerMES is a Herschel Key Programme utilizing Guaranteed Time from the SPIRE instrument team, ESAC scientists and a mission scientist. Data analysis was in part carried out on the common-use data analysis computer system at the Astronomy Data Center (ADC) of the National Astronomical Observatory of Japan.

Reviewer information

Nature thanks F. Bournaud and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. National Astronomical Observatory of Japan, Tokyo, Japan

    • K. Tadaki
    • , D. Iono
    • , T. Izumi
    • , R. Kawabe
    • , M. Lee
    • , Y. Matsuda
    • , K. Nakanishi
    • , J. Ueda
    • , T. Michiyama
    •  & M. Ando
  2. SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan

    • D. Iono
    • , R. Kawabe
    • , Y. Matsuda
    • , K. Nakanishi
    • , T. Michiyama
    •  & M. Ando
  3. Department of Astronomy, University of Massachusetts, Amherst, MA, USA

    • M. S. Yun
    • , G. W. Wilson
    •  & P. Kamieneski
  4. Instituto Nacional de Astrofisica, Opticay Electronica (INAOE), Puebla, Mexico

    • I. Aretxaga
    •  & D. H. Hughes
  5. Institute of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo, Japan

    • B. Hatsukade
    • , K. Kohno
    •  & H. Umehata
  6. Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands

    • S. Ikarashi
  7. Department of Astronomy, The University of Tokyo, Tokyo, Japan

    • R. Kawabe
  8. Research Center for the Early Universe, The University of Tokyo, Tokyo, Japan

    • K. Kohno
  9. Division of Particle and Astrophysical Science, Nagoya University, Nagoya, Japan

    • M. Lee
    •  & Y. Tamura
  10. Max-Planck-Institute for Astronomy, Heidelberg, Germany

    • T. Saito
  11. RIKEN Cluster for Pioneering Research, Saitama, Japan

    • H. Umehata


  1. Search for K. Tadaki in:

  2. Search for D. Iono in:

  3. Search for M. S. Yun in:

  4. Search for I. Aretxaga in:

  5. Search for B. Hatsukade in:

  6. Search for D. H. Hughes in:

  7. Search for S. Ikarashi in:

  8. Search for T. Izumi in:

  9. Search for R. Kawabe in:

  10. Search for K. Kohno in:

  11. Search for M. Lee in:

  12. Search for Y. Matsuda in:

  13. Search for K. Nakanishi in:

  14. Search for T. Saito in:

  15. Search for Y. Tamura in:

  16. Search for J. Ueda in:

  17. Search for H. Umehata in:

  18. Search for G. W. Wilson in:

  19. Search for T. Michiyama in:

  20. Search for M. Ando in:

  21. Search for P. Kamieneski in:


K.T. led the project and reduced the ALMA data. K.T. and D.I. wrote the manuscript. M.S.Y. reduced the Large Millimeter Telescope data and edited the final manuscript. Other authors contributed to the interpretation and commented on the ALMA proposal and the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to K. Tadaki.

Extended data figures and tables

  1. Extended Data Fig. 1 Galaxy-integrated CO (4–3), CO (1–0) and C i (2–1) spectra of AzTEC-1.

    The CO (4–3) spectrum is extracted using an 0.8″-diameter aperture in the natural-weighted map cube. The C i (1–0) and C i (2–1) spectra are extracted from the peak positions in map cubes with 1.7″ × 1.1″ and 0.8″ × 0.7″ resolution, respectively. Yellow shaded regions show the velocity range v = −315 km s−1 to v = +315 km s−1, in which the velocity-integrated line fluxes are measured.

  2. Extended Data Fig. 2 Galaxy-integrated SED of AzTEC-1.

    Red circles show the photometric data from Subaru (r′, i′, z′)37, VISTA (Ks)37, Spitzer (3.6 μm, 4.4 μm)37, Herschel (250 μm, 350 μm, 500 μm)38,39, ALMA (860 μm, 2.1 mm, 3.2 mm) and JVLA (10 cm)40. The black line shows the best-fitting SED model from MAGPHYS41,42.

  3. Extended Data Fig. 3 CO spectra along the kinematic major axis.

    Spectra are extracted at a position angle of PA = −64°. The spatial offset x from the galactic centre is shown at the upper left of each panel. Red lines indicate the spectra of the best-fitting dynamical model produced by GalPaK3D.

  4. Extended Data Fig. 4 Full MCMC chain for 20,000 iterations.

    Red solid lines and black dashed lines indicate the median and 95% confidence interval of the last 60% of the MCMC chain.

  5. Extended Data Table 1 Line fluxes in AzTEC-1

About this article

Publication history




Issue Date




By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.