Abstract
The hallmark property of two-dimensional topological insulators is robustness of quantized electronic transport of charge and energy against disorder in the underlying lattice1. That robustness arises from the fact that, in the topological bandgap, such transport can occur only along the edge states, which are immune to backscattering owing to topological protection. However, for sufficiently strong disorder, this bandgap closes and the system as a whole becomes topologically trivial: all states are localized and all transport vanishes in accordance with Anderson localization2,3. The recent suggestion4 that the reverse transition can occur was therefore surprising. In so-called topological Anderson insulators, it has been predicted4 that the emergence of protected edge states and quantized transport can be induced, rather than inhibited, by the addition of sufficient disorder to a topologically trivial insulator. Here we report the experimental demonstration of a photonic topological Anderson insulator. Our experiments are carried out in an array of helical evanescently coupled waveguides in a honeycomb geometry with detuned sublattices. Adding on-site disorder in the form of random variations in the refractive index of the waveguides drives the system from a trivial phase into a topological one. This manifestation of topological Anderson insulator physics shows experimentally that disorder can enhance transport rather than arrest it.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Simulating topological materials with photonic synthetic dimensions in cavities
Quantum Frontiers Open Access 16 November 2022
-
Observation of non-Hermitian topological Anderson insulator in quantum dynamics
Nature Communications Open Access 09 June 2022
-
Electron localization induced by intrinsic anion disorder in a transition metal oxynitride
Communications Physics Open Access 17 December 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).
Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photon. 7, 197–204 (2013).
Li, J., Chu, R.-L., Jain, J. K. & Shen, S.-Q. Topological Anderson insulator. Phys. Rev. Lett. 102, 136806 (2009).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).
Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).
Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).
Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).
Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).
Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 8, 13756 (2017).
Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 13918 (2017).
Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alù, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).
Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).
Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2014).
Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).
Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).
Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).
Titum, P., Lindner, N. H., Rechtsman, M. C. & Refael, G. Disorder-induced Floquet topological insulators. Phys. Rev. Lett. 114, 056801 (2015).
Guo, H.-M., Rosenberg, G., Refael, G. & Franz, M. Topological Anderson insulator in three dimensions. Phys. Rev. Lett. 105, 216601 (2010).
Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).
Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).
Titum, P., Berg, E., Rudner, M. S., Refael, G. & Lindner, N. H. Anomalous Floquet-Anderson insulator as a nonadiabatic quantized charge pump. Phys. Rev. X 6, 021013 (2016).
Meier, E. J. et al. Observation of the topological Anderson insulator in disordered atomic wires. Preprint at https://arxiv.org/abs/1802.02109 (2018).
Groth, C. W. et al. Theory of the topological Anderson insulator. Phys. Rev. Lett. 103, 196805 (2019).
Titum, P., Lindner, N. H. & Refael, G. Disorder-induced transitions in resonantly driven Floquet topological insulators. Phys. Rev. B 96, 054207 (2017).
Acknowledgements
A.S. and M.S. thank the German-Israeli DIP (project BL 574/13-1). A.S. acknowledges funding from the German Research Foundation (project SZ 276/9-1). M.S. thanks the European Research Council for financial support. N.L. acknowledges financial support from the European Research Council under the European Union Horizon 2020 Research and Innovation Programme (grant agreement number 639172), from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number 631696 and from the Israeli Center of Research Excellence (I-CORE) Circle of Light, funded by the Israeli Science Foundation. M.C.R. acknowledges support from the National Science Foundation under grant number DMS-1620422, as well as the Sloan (FG-2016-6418) and Kaufman (KA2017-91788) foundations. P.T. is supported by an NRC postdoctoral fellowship. The authors acknowledge the University of Maryland supercomputing resources made available for conducting the research reported in this paper.
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Experimental and numerical results for the disordered system.
a, The averaged intensity profile of the edge state, which peaks at the waveguide positions. b, A fit through the waveguide peak intensities decays exponentially, with a decay length of 47 μm. c, The function gN(r0, r, ε), integrated along the edge, showing a decay length of about 7a. The inset shows the simulated displacement of the wavefunction along the edge for the parameters listed in Methods, from which the group velocity can be extracted. d, The function gN(r0, r, ε), for an initial position r0 deep in the bulk of the system, showing that the bulk localization length is approximately 4a.
Rights and permissions
About this article
Cite this article
Stützer, S., Plotnik, Y., Lumer, Y. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018). https://doi.org/10.1038/s41586-018-0418-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-018-0418-2
This article is cited by
-
Observation of non-Hermitian topological Anderson insulator in quantum dynamics
Nature Communications (2022)
-
Diffusive topological transport in spatiotemporal thermal lattices
Nature Physics (2022)
-
Gap solitons in a one-dimensional driven-dissipative topological lattice
Nature Physics (2022)
-
Bimorphic Floquet topological insulators
Nature Materials (2022)
-
Simulating topological materials with photonic synthetic dimensions in cavities
Quantum Frontiers (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.