Letter | Published:

Reverse weathering as a long-term stabilizer of marine pH and planetary climate


For the first four billion years of Earth’s history, climate was marked by apparent stability and warmth despite the Sun having lower luminosity1. Proposed mechanisms for maintaining an elevated partial pressure of carbon dioxide in the atmosphere (\({p}_{{{\rm{CO}}}_{{\rm{2}}}}\)) centre on a reduction in the weatherability of Earth’s crust and therefore in the efficiency of carbon dioxide removal from the atmosphere2. However, the effectiveness of these mechanisms remains debated2,3. Here we use a global carbon cycle model to explore the evolution of processes that govern marine pH, a factor that regulates the partitioning of carbon between the ocean and the atmosphere. We find that elevated rates of ‘reverse weathering’—that is, the consumption of alkalinity and generation of acidity during marine authigenic clay formation4,5,6,7—enhanced the retention of carbon within the ocean–atmosphere system, leading to an elevated \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\) baseline. Although this process is dampened by sluggish kinetics today, we propose that more prolific rates of reverse weathering would have persisted under the pervasively silica-rich conditions8,9 that dominated Earth’s early oceans. This distinct ocean and coupled carbon–silicon cycle state would have successfully maintained the equable and ice-free environment that characterized most of the Precambrian period. Further, we propose that during this time, the establishment of a strong negative feedback between marine pH and authigenic clay formation would have also enhanced climate stability by mitigating large swings in \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\)—a critical component of Earth’s natural thermostat that would have been dominant for most of Earth’s history. We speculate that the late ecological rise of siliceous organisms8 and a resulting decline in silica-rich conditions dampened the reverse weathering buffer, destabilizing Earth’s climate system and lowering baseline \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\).

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Gough, D. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

  2. 2.

    Kump, L. R., Brantley, S. L. & Arthur, M. A. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000).

  3. 3.

    Keller, C. & Wood, B. Possibility of chemical weathering before the advent of vascular land plants. Nature 364, 223–225 (1993).

  4. 4.

    Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).

  5. 5.

    Garrels, R. M. Silica: role in the buffering of natural waters. Science 148, 69 (1965).

  6. 6.

    Sillén, L. G. The physical chemistry of sea water. Oceanography 67, 549–581 (1961).

  7. 7.

    Mackenzie, F. T. & Garrels, R. M. Silica-bicarbonate balance in the ocean and early diagenesis. J. Sedim. Petrol. 36, 1075–1084 (1966).

  8. 8.

    Maliva, R. G., Knoll, A. H. & Simonson, B. M. Secular change in the Precambrian silica cycle: insights from chert petrology. Geol. Soc. Am. Bull. 117, 835–845 (2005).

  9. 9.

    Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

  10. 10.

    Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 4–10 (2004).

  11. 11.

    Walker, J. C., Hays, P. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

  12. 12.

    Kasting, J. F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambr. Res. 34, 205–229 (1987).

  13. 13.

    Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambr. Res. 147, 148–155 (2006).

  14. 14.

    Kanzaki, Y. & Murakami, T. Estimates of atmospheric CO2 in the Neoarchean–Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015).

  15. 15.

    Fiorella, R. P. & Sheldon, N. D. Equable end Mesoproterozoic climate in the absence of high CO2. Geology 45, 231–234 (2017).

  16. 16.

    Urey, H. C. On the early chemical history of the Earth and the origin of life. Proc. Natl Acad. Sci. USA 38, 351–363 (1952).

  17. 17.

    Mackin, J. E. & Aller, R. C. Dissolved Al in sediments and waters of the East China Sea: implications for authigenic mineral formation. Geochim. Cosmochim. Acta 48, 281–297 (1984).

  18. 18.

    Baldermann, A., Warr, L., Letofsky-Papst, I. & Mavromatis, V. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments. Nat. Geosci. 8, 885–889 (2015).

  19. 19.

    Bhattacharyya, D. P. Origin of berthierine in ironstones. Clays Clay Miner. 31, 173–182 (1983).

  20. 20.

    Zeebe, R. LOSCAR: long-term ocean-atmosphere-sediment carbon cycle reservoir model v2.0.4. Geosci. Model Dev. 5, 149–166 (2012).

  21. 21.

    Hazen, R. M. et al. Clay mineral evolution. Am. Mineral. 98, 2007–2029 (2013).

  22. 22.

    Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation of Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

  23. 23.

    Halevy, I., Alesker, M., Schuster, E., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).

  24. 24.

    Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 128, 511–530 (2016).

  25. 25.

    Ehlert, C. et al. Stable silicon isotope signatures of marine pore waters—biogenic opal dissolution versus authigenic clay mineral formation. Geochim. Cosmochim. Acta 191, 102–117 (2016).

  26. 26.

    Rahman, S., Aller, R. & Cochran, J. Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: major deltaic sinks in the silica cycle. Geophys. Res. Lett. 43, 7124–7132 (2016).

  27. 27.

    Wallmann, K. et al. Silicate weathering in anoxic marine sediments. Geochim. Cosmochim. Acta 72, 2895–2918 (2008).

  28. 28.

    Michalopoulos, P. & Aller, R. C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68, 1061–1085 (2004).

  29. 29.

    Tréguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013).

  30. 30.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

  31. 31.

    Coogan, L. A. & Dosso, S. E. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 38–46 (2015).

  32. 32.

    Tajika, E. & Matsui, T. Evolution of terrestrial proto-CO2 atmosphere coupled with thermal history of the Earth. Earth Planet. Sci. Lett. 113, 251–266 (1992).

  33. 33.

    Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

  34. 34.

    Sillén, L. G. The ocean as a chemical system. Science 156, 1189–1197 (1967).

  35. 35.

    Mackenzie, F. T. & Garrels, R. M. Silicates: reactivity with sea water. Science 150, 57–58 (1965).

  36. 36.

    Holland, H. D. The history of ocean water and its effect on the chemistry of the atmosphere. Proc. Natl Acad. Sci. USA 53, 1173–1183 (1965).

  37. 37.

    Michalopoulos, P., Aller, R. C. & Reeder, R. J. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology 28, 1095–1098 (2000).

  38. 38.

    Presti, M. & Michalopoulos, P. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta. Cont. Shelf Res. 28, 823–838 (2008).

  39. 39.

    Mackin, J. E. & Aller, R. C. The effects of clay mineral reactions on dissolved Al distributions in sediments and waters of the Amazon continental shelf. Cont. Shelf Res. 6, 245–262 (1986).

  40. 40.

    Ristvet, B. L. Reverse Weathering Reactions Within Recent Nearshore Marine Sediments, Kaneohe Bay, Oahu. PhD thesis, https://scholarspace.manoa.hawaii.edu/bitstream/10125/18151/1/ristvet.pdf, Northwestern Univ. Illinois, Chicago (1978).

  41. 41.

    Higgins, J. & Schrag, D. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim. Cosmochim. Acta 74, 5039–5053 (2010).

  42. 42.

    Baldermann, A., Warr, L. N., Grathoff, G. H. & Dietzel, M. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast–Ghana marginal ridge. Clays Clay Miner. 61, 258–276 (2013).

  43. 43.

    Treguer, P. et al. The silica balance in the world ocean: a reestimate. Science 268, 375–379 (1995).

  44. 44.

    Laruelle, G. G. et al. Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob. Biogeochem. Cycles 23, https://doi.org/10.1029/2008GB003267 (2009).

  45. 45.

    Holland, H. D. Sea level, sediments and the composition of seawater. Am. J. Sci. 305, 220–239 (2005).

  46. 46.

    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

  47. 47.

    Mills, B., Lenton, T. M. & Watson, A. J. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc. Natl Acad. Sci. USA 111, 9073–9078 (2014).

  48. 48.

    Frings, P. Revisiting the dissolution of biogenic Si in marine sediments: a key term in the ocean Si budget. Acta Geochim. 36, 429–432 (2017).

  49. 49.

    Brady, P. V. & Carroll, S. A. Direct effects of CO2 and temperature on silicate weathering: possible implications for climate control. Geochim. Cosmochim. Acta 58, 1853–1856 (1994).

  50. 50.

    Pichevin, L., Ganeshram, R., Geibert, W., Thunell, R. & Hinton, R. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat. Geosci. 7, 541–546 (2014).

  51. 51.

    Soppa, M. A. et al. Global retrieval of diatom abundance based on phytoplankton pigments and satellite data. Remote Sens. 6, 10089–10106 (2014).

  52. 52.

    Siever, R. The silica budget in the sedimentary cycle. Am. Mineral. 42, 821–841 (1957).

  53. 53.

    Drever, J. I. Geochemical model for the origin of Precambrian banded iron formations. Geol. Soc. Am. Bull. 85, 1099–1106 (1974).

  54. 54.

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

  55. 55.

    Perry, E. C. J. & Lefticariu, L. Formation and Geochemistry of Precambrian Cherts. In Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 1–21 (Elsevier, New York, 2003).

  56. 56.

    Maliva, R. G., Knoll, A. H. & Siever, R. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4, 519–532 (1989).

  57. 57.

    Fischer, W. W. & Knoll, A. H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation. Geol. Soc. Am. Bull. 121, 222–235 (2009).

  58. 58.

    Knoll, A. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Phil. Trans. R. Soc. Lond. B 311, 111–122 (1985).

  59. 59.

    Knoll, A., Swett, K. & Mark, J. Paleobiology of a Neoproterozoic tidal flat complex: the Draken Conglomerate Formation, Spitsbergen. J. Paleontol. 65, 531–570 (1991).

  60. 60.

    Callow, R. H. & Brasier, M. D. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth Sci. Rev. 96, 207–219 (2009).

  61. 61.

    Renaut, R., Jones, B. & Tiercelin, J. J. Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley. Sedimentology 45, 1083–1103 (1998).

  62. 62.

    Newman, S. et al. Experimental fossilization of mat-forming cyanobacteria in coarse-grained siliciclastic sediments. Geobiology 44, 579–582 (2017).

  63. 63.

    Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Mineral. 90, 1473–1499 (2005).

  64. 64.

    Kaufman, A. J., Hayes, J. & Klein, C. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim. Cosmochim. Acta 54, 3461–3473 (1990).

  65. 65.

    Morris, R. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambr. Res. 60, 243–286 (1993).

  66. 66.

    Ewers, W. & Morris, R. Studies of the Dales Gorge member of the Brockman iron formation, Western Australia. Econ. Geol. 76, 1929–1953 (1981).

  67. 67.

    Eugster, H. & Chou, I. The depositional environments of Precambrian banded iron-formations. Econ. Geol. 68, 1144–1168 (1973).

  68. 68.

    Rasmussen, B., Muhling, J. R., Suvorova, A. & Krapež, B. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambr. Res. 290, 49–62 (2017).

  69. 69.

    Rasmussen, B., Krapež, B., Muhling, J. R. & Suvorova, A. Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology 43, 303–306 (2015).

  70. 70.

    Tosca, N. J., Macdonald, F. A., Strauss, J. V., Johnston, D. T. & Knoll, A. H. Sedimentary talc in Neoproterozoic carbonate successions. Earth Planet. Sci. Lett. 306, 11–22 (2011).

  71. 71.

    Noack, Y., Decarreau, A., Boudzoumou, F. & Trompette, R. Low-temperature oolitic talc in upper Proterozoic rocks, Congo. J. Sediment. Res. 59, 717–723 (1989).

  72. 72.

    Davis, C. C., Chen, H.-W. & Edwards, M. Modeling silica sorption to iron hydroxide. Environ. Sci. Technol. 36, 582–587 (2002).

  73. 73.

    Siever, R. & Woodford, N. Sorption of silica by clay minerals. Geochim. Cosmochim. Acta 37, 1851–1880 (1973).

  74. 74.

    Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234 (2007).

  75. 75.

    Siever, R. Silica solubility, 0°-200° C, and the diagenesis of siliceous sediments. J. Geol. 70, 127–150 (1962).

  76. 76.

    Konhauser, K. O. et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci. Rev. 172, 140–177 (2017).

  77. 77.

    Korenaga, J., Planavsky, N. J. & Evans, D. A. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. Lond. A 375, 20150393 (2017).

  78. 78.

    Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

  79. 79.

    Satkoski, A. M., Lowe, D. R., Beard, B. L., Coleman, M. L. & Johnson, C. M. A high continental weathering flux into Paleoarchean seawater revealed by strontium isotope analysis of 3.26 Ga barite. Earth Planet. Sci. Lett. 454, 28–35 (2016).

  80. 80.

    Lee, C.-T. A. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

  81. 81.

    Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

  82. 82.

    Greber, N. D. et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357, 1271–1274 (2017).

  83. 83.

    Holland, H. D. Why the atmosphere became oxygenated: a proposal. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

  84. 84.

    O’Neill, C., Lenardic, A., Höink, T. & Coltice, N. Mantle convection and outgassing on terrestrial planets. In Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J. et al.) 473–446 (Univ. of Arizona Press, Tucson, 2014).

  85. 85.

    Pletsch, T. Palaeoenvironmental implications of palygorskite clays in Eocene deep-water sediments from the western central Atlantic. Geol. Soc. Lond. Spec. Publ. 183, 307–316 (2001).

  86. 86.

    Rasmussen, B., Meier, D. B., Krapež, B. & Muhling, J. R. Iron silicate microgranules as precursor sediments to 2.5-billion-year-old banded iron formations. Geology 41, 435–438 (2013).

  87. 87.

    Johnson, J. E., Muhling, J. R., Cosmidis, J., Rasmussen, B. & Templeton, A. S. Low-Fe (III) greenalite was a primary mineral from Neoarchean oceans. Geophys. Res. Lett. 45, 3182–3192 (2018).

  88. 88.

    Huang, J., Chu, X., Lyons, T., Planavsky, N. & Wen, H. A new look at saponite formation and its implications for early animal records in the Ediacaran of South China. Geobiology 11, 3–14 (2013).

  89. 89.

    LaBerge, G. L. Development of magnetite in iron formations of the Lake Superior region. Econ. Geol. 59, 1313–1342 (1964).

  90. 90.

    French, B. M. Progressive contact metamorphism of the Biwabik Iron-formation, Mesabi Range, Minnesota. Minn. Geol. Surv. 49, 1–103 https://conservancy.umn.edu/bitstream/handle/11299/57071/MGS_B_45.pdf?sequence=1 (University of Minnesota Digital Conservancy, Univ. Minnesota Press, Minneapolis, 1968).

  91. 91.

    Garrels, R. M. & Mackenzie, F. T. Sedimentary rock types: relative proportions as a function of geological time. Science 163, 570–571 (1969).

  92. 92.

    Peters, S. E. & Husson, J. M. Sediment cycling on continental and oceanic crust. Geology 45, 323–326 (2017).

  93. 93.

    James, H. L. Sedimentary facies of iron-formation. Econ. Geol. 49, 235–293 (1954).

  94. 94.

    Klein, C. Greenalite, stilpnomelane, minnesotaite, crocidolite and carbonates in a very low-grade metamorphic Precambrian iron formation. Can. Mineral. 12, 475–498 (1974).

  95. 95.

    Wood, R. A., Grotzinger, J. P. & Dickson, J. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296, 2383–2386 (2002).

  96. 96.

    Martin, R. E. Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans. Global Planet. Change 11, 1–23 (1995).

  97. 97.

    Ridgwell, A. A Mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).

  98. 98.

    Grotzinger, J. P. & Knoll, A. H. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10, 578–596 (1995).

  99. 99.

    Sumner, D. Y. & Grotzinger, J. P. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24, 119–122 (1996).

  100. 100.

    Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15, 111–114 (1987).

  101. 101.

    Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

  102. 102.

    Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geology 43, 607–610 (2015).

  103. 103.

    Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

  104. 104.

    Berner, R. A. Principles of Chemical Sedimentology (McGraw-Hill, 1971).

  105. 105.

    Boudreau, B. P. Diagenetic Models and their Implementation (Springer, 1997).

  106. 106.

    Wilson, J., Savage, D., Cuadros, J., Shibata, M. & Ragnarsdottir, K. V. The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations. Geochim. Cosmochim. Acta 70, 306–322 (2006).

  107. 107.

    Fritz, S. J. & Toth, T. A. An Fe-berthierine from a Cretaceous laterite; Part II, Estimation of Eh, pH and \({p}_{C{O}_{2}}\) conditions of formation. Clays Clay Miner. 45, 580–586 (1997).

  108. 108.

    Weaver, C. E. & Beck, K. C. Miocene of the SE United States: a model for chemical sedimentation in a peri-marine environment. Sedim. Geol. 17, 1–234 (1977).

  109. 109.

    Tosca, N. J. & Wright, V. P. Diagenetic pathways linked to labile Mg-clays in lacustrine carbonate reservoirs: a model for the origin of secondary porosity in the Cretaceous pre-salt Barra Velha Formation, offshore Brazil. Geol. Soc. Lond. Spec. Publ. 435, 435 (2015).

  110. 110.

    Birsoy, R. Formation of sepiolite-palygorskite and related minerals from solution. Clays Clay Miner. 50, 736–745 (2002).

  111. 111.

    Baldermann, A., Mavromatis, V., Frick, P. M. & Dietzel, M. Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25°C. Geochim. Cosmochim. Acta 227, 211–226 (2018).

  112. 112.

    Wollast, R., Mackenzie, F. T. & Bricker, O. P. Experimental precipitation and genesis of sepiolite at Earth-surface conditions. Am. Mineral. 53, 1645–1662 (1968).

  113. 113.

    Tosca, N. & Masterson, A. Chemical controls on incipient Mg-silicate crystallization at 25 C: implications for early and late diagenesis. Clay Miner. 49, 165–194 (2014).

  114. 114.

    Sharma, G. D. Influence of CO2 on silica in solution. Geochem. J. 3, 213–223 (1970).

  115. 115.

    Reed, D. C., Slomp, C. P. & Gustafsson, B. G. Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: a coupled benthic–pelagic model of a coastal system. Limnol. Oceanogr. 56, 1075–1092 (2011).

  116. 116.

    Uchikawa, J. & Zeebe, R. E. Influence of terrestrial weathering on ocean acidification and the next glacial inception. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL035963 (2008).

  117. 117.

    Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. Planets 106, 1373–1399 (2001).

  118. 118.

    Walker, J. C. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Global Planet. Change 5, 151–189 (1992).

  119. 119.

    Volk, T. Feedbacks between weathering and atmospheric CO2 over the last 100 million years. Am. J. Sci. 287, 763–779 (1987).

Download references


This research was supported by the NASA Astrobiology Institute under Cooperative Agreement number NNA15BB03A issued through the Science Mission Directorate. We thank R. Zeebe for access to LOSCAR v.2.0.4. We also thank M. Zhao, K. Daviau and D. Pennman for model discussions.

Reviewer information

Nature thanks L. Coogan and Y. Godderis for their contribution to the peer review of this work.

Author information

T.T.I. conceived the research ideas, developed and analysed the model, and wrote the paper. N.J.P. contributed to discussion and writing.

Competing interests

The authors declare no competing interests.

Correspondence to Terry T. Isson.

Extended data figures and tables

Extended Data Fig. 1 Conceptual model for reverse weathering as a stabilizer of the long-term global carbon cycle and climate.

Reverse weathering regulates atmospheric \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\) through the establishment of a stabilizing feedback with marine pH (a pH thermostat). This feedback operates in conjunction with the silicate weathering feedback (dependence of chemical weathering and erosion on temperature and rainfall) to stabilize climate. A more potent reverse-weathering buffer, which is to be expected under high-silica Precambrian conditions, greatly strengthens the pH buffering capacity of oceans.

Extended Data Fig. 2 Saturation index of some common rock forming silicates in modern and Precambrian bottom waters.

The baseline conditions of the dissolved species are Na = 0.48 M; Fe = 540 × 10−12 M; Mg = 52.7 mM; K = 10.2 mM; Al = 1 × 10−15 M; Ca = 10.3 mM. Dissolved silica and iron concentrations are varied between modern-like (blue) and estimated Precambrian-like conditions (yellow and red). Thermodynamic database is Geochemists Workbench 10.0 (https://www.gwb.com/pdf/GWB10/GWBessentials.pdf).

Extended Data Fig. 3 An occurrence density plot of modern marine porewater dissolved silica levels.

The plot is based on dissolved silica concentrations (n = 6,245) from 453 sediment cores globally48. The map plots dissolved Si levels with sediment depth (depth = 0 indicates the sediment–water interface). Warmer colours indicate elevated occurrences.

Extended Data Fig. 4 Sensitivity analysis to marine weathering fluxes.

Steady-state results for \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\) and pH over the estimated range of marine weathering CO2 consumption flux (Fmw) after ref. 27. a, Simulating modern Earth states. Acidity release through reverse weathering is fixed at 1 Tmol yr−1. b, Simulating Precambrian Earth states with elevated reverse-weathering buffer at dissolved silica of 1.33 mM. Contours highlight the variation of volcanic outgassing rates in teramoles per year. Shaded areas indicate parameter space that is unattainable for a steady-state system (marine weathering exceeds the sum of CO2 fluxes from degassing and extent of reverse weathering).

Extended Data Fig. 5 Literature compilation of greenalite (gr), minnesotaite (min) and stilpnomelane (stilp) in marine sedimentary units through time.

a, Proportion of marine sediment coverage through time92. bf, Raw data for the minerals given, and data normalized to the proportion of marine sediment coverage.

Extended Data Fig. 6 Example porewater profiles of DIC, pH, [H4SiO4] and organic (org) matter at steady state.

Curves represent results from model runs at varying bottom seawater pH (6.6–7.4) and [H4SiO4] (1.00–2.21 mM) conditions in diffusional exchange with sediment porewaters in deep sea (ac), slope (d) and shelf (e) environments. Subscript ‘sw’ indicates seawater.

Extended Data Fig. 7 Analysis of sensitivity to diagenetic model parameters.

Baseline conditions (green) are the deep-sea environment, with marine [H4SiO4] = 2.21 mM and marine DIC = 0.030 M. Shown are sensitivity to sedimentation rate ω (yr−1), diffusion coefficient of [H4SiO4] (cm2 yr−1), organic matter rate constant korg (yr−1), reverse-weathering rate constant krw (yr−1), calcite rate constant kcalc (mol cm−3 yr−1) and the efficiency of water column P scavenging.

Extended Data Fig. 8 Steady-state outputs for reverse weathering versus the given parameters.

a, Atmospheric \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\); b, marine pH; c, marine DIC; d, total alkalinity; e, calcite saturation, Ω. Frw is the total silica consumption flux and frw is the fraction of the consumption flux of the total marine silica input. Within panel e, shallow-water values are plotted in red and global ocean mean values in blue. Contours represent variations to Alk:Si. The strength of the silicate weathering feedback (nsi) is set at 0.3. The root of each curve depicts preindustrial estimates and a reverse-weathering silica flux of about 0.5 Tmol yr−1 (frw = 0.05)29.

Extended Data Fig. 9 Sensitivity analysis to the strength of the silicate weathering feedback.

nsi = 0.1–0.5. Data are from refs 11,20,46,116,117,118,119. The grey-shaded area highlights the range where nsi = 0.3 (Fig. 1). Contours represent variations to Alk:Si.

Extended Data Fig. 10 The relationship between marine [H4SiO4] and \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\) and marine pH at modern outgassing rates.

The relationship between marine [H4SiO4] and \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\) and marine pH at modern outgassing rates.

Supplementary information

Supplementary Tables 1-2

This file contains Supplementary Table 1, a list of Model parameters and Supplementary Table 2 the sedimentary record of authigenic clays.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Atmospheric \({{\boldsymbol{p}}}_{{\bf{C}}{{\bf{O}}}_{{\bf{2}}}}\) as a function of reverse weathering, frw, at steady state.
Fig. 2: \({{\boldsymbol{p}}}_{{\bf{C}}{{\bf{O}}}_{{\bf{2}}}}\) and pH results for systems buffered by reverse weathering under silica-rich conditions (blue) versus unbuffered low-silica systems (red).
Fig. 3: Evolution of reverse weathering and climate stability.
Extended Data Fig. 1: Conceptual model for reverse weathering as a stabilizer of the long-term global carbon cycle and climate.
Extended Data Fig. 2: Saturation index of some common rock forming silicates in modern and Precambrian bottom waters.
Extended Data Fig. 3: An occurrence density plot of modern marine porewater dissolved silica levels.
Extended Data Fig. 4: Sensitivity analysis to marine weathering fluxes.
Extended Data Fig. 5: Literature compilation of greenalite (gr), minnesotaite (min) and stilpnomelane (stilp) in marine sedimentary units through time.
Extended Data Fig. 6: Example porewater profiles of DIC, pH, [H4SiO4] and organic (org) matter at steady state.
Extended Data Fig. 7: Analysis of sensitivity to diagenetic model parameters.
Extended Data Fig. 8: Steady-state outputs for reverse weathering versus the given parameters.
Extended Data Fig. 9: Sensitivity analysis to the strength of the silicate weathering feedback.
Extended Data Fig. 10: The relationship between marine [H4SiO4] and \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\) and marine pH at modern outgassing rates.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.