Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct arylation of strong aliphatic C–H bonds

Abstract

Despite the widespread success of transition-metal-catalysed cross-coupling methodologies, considerable limitations still exist in reactions at sp3-hybridized carbon atoms, with most approaches relying on prefunctionalized alkylmetal or bromide coupling partners1,2. Although the use of native functional groups (for example, carboxylic acids, alkenes and alcohols) has improved the overall efficiency of such transformations by expanding the range of potential feedstocks3,4,5, the direct functionalization of carbon–hydrogen (C–H) bonds—the most abundant moiety in organic molecules—represents a more ideal approach to molecular construction. In recent years, an impressive range of reactions that form C(sp3)–heteroatom bonds from strong C–H bonds has been reported6,7. Additionally, valuable technologies have been developed for the formation of carbon–carbon bonds from the corresponding C(sp3)–H bonds via substrate-directed transition-metal C–H insertion8, undirected C–H insertion by captodative rhodium carbenoid complexes9, or hydrogen atom transfer from weak, hydridic C–H bonds by electrophilic open-shell species10,11,12,13,14. Despite these advances, a mild and general platform for the coupling of strong, neutral C(sp3)–H bonds with aryl electrophiles has not been realized. Here we describe a protocol for the direct C(sp3) arylation of a diverse set of aliphatic, C–H bond-containing organic frameworks through the combination of light-driven, polyoxometalate-facilitated hydrogen atom transfer and nickel catalysis. This dual-catalytic manifold enables the generation of carbon-centred radicals from strong, neutral C–H bonds, which thereafter act as nucleophiles in nickel-mediated cross-coupling with aryl bromides to afford C(sp3)–C(sp2) cross-coupled products. This technology enables unprecedented, single-step access to a broad array of complex, medicinally relevant molecules directly from natural products and chemical feedstocks through functionalization at sites that are unreactive under traditional methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Undirected aliphatic C–H arylation.
Fig. 2: Reaction scheme and proposed mechanism for C(sp3)–H arylation via a dual polyoxometalate HAT and nickel catalytic manifold.
Fig. 3: Scope of the alkyl nucleophile coupling partner.
Fig. 4: Scope of the aryl halide coupling partner.
Fig. 5: Functionalization, synthesis and derivatization of natural products.

Similar content being viewed by others

References

  1. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lo, J. C., Gui, J., Yabe, Y., Pan, C.-M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang, X. & MacMillan, D. W. C. Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3–sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc. 138, 13862–13865 (2016).

    Article  CAS  Google Scholar 

  6. Margrey, K. A., Czaplyski, W. L., Nicewicz, D. A. & Alexanian, E. J. A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J. Am. Chem. Soc. 140, 4213–4217 (2018).

    Article  PubMed  CAS  Google Scholar 

  7. Karimov, R. R. & Hartwig, J. F. Transition-metal-catalyzed selective functionalization of C(sp3)–H bonds in natural products. Angew. Chem. Int. Ed. 57, 4234–4241 (2018).

    Article  CAS  Google Scholar 

  8. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  PubMed  CAS  Google Scholar 

  9. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp 3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang, X. & MacMillan, D. W. C. Direct aldehyde C–H arylation and alkylation via the combination of nickel, hydrogen atom transfer, and photoredox catalysis. J. Am. Chem. Soc. 139, 11353–11356 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shields, B. J. & Doyle, A. G. Direct C(sp3)–H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  16. Liu, D. et al. Nickel-catalyzed selective oxidative radical cross-coupling: an effective strategy for inert Csp3–H functionalization. Org. Lett. 17, 998–1001 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Hill, C. L. & Prosser-McCartha, C. M. in Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds (eds Kalyanasundaram, K. & Grätzel, M.) 307–330 (Springer, Dordrecht, 1993).

  18. Renneke, R. F. & Hill, C. L. Homogeneous catalytic photochemical functionalization of alkanes by polyoxometalates. J. Am. Chem. Soc. 108, 3528–3529 (1986).

    Article  CAS  Google Scholar 

  19. Renneke, R. F. & Hill, C. L. Selective photochemical dehydrogenation of saturated hydrocarbons with quantum yields approaching unity. Angew. Chem. Int. Ed. Engl. 27, 1526–1527 (1988).

    Article  Google Scholar 

  20. Ravelli, D., Protti, S. & Fagnoni, M. Decatungstate anion for photocatalyzed “window ledge” reactions. Acc. Chem. Res. 49, 2232–2242 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Schultz, D. M. et al. Oxyfunctionalization of the remote C–H bonds of aliphatic amines by decatungstate photocatalysis. Angew. Chem. Int. Ed. 56, 15274–15278 (2017).

    Article  CAS  Google Scholar 

  22. Halperin, S. D. et al. Development of a direct photocatalytic C–H fluorination for the preparative synthesis of odanacatib. Org. Lett. 17, 5200–5203 (2015).

    Article  PubMed  CAS  Google Scholar 

  23. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  24. Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, Boca Raton, 2003).

    Google Scholar 

  25. Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–713 (2018).

    Article  CAS  Google Scholar 

  26. De Waele, V., Poizat, O., Fagnoni, M., Bagno, A. & Ravelli, D. Unraveling the key features of the reactive state of decatungstate anion in hydrogen atom transfer (HAT) photocatalysis. ACS Catal. 6, 7174–7182 (2016).

    Article  CAS  Google Scholar 

  27. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ermolenko, L. P. & Giannotti, C. Aerobic photocatalysed oxidation of alkanes in the presence of decatungstates: products and effects of solvent and counter-ion of the catalyst. J. Chem. Soc. Perkin Trans. 2 6, 1205–1210 (1996).

  29. Grynkiewicz, G. & Gadzikowska, M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol. Rep. 60, 439–463 (2008).

    PubMed  CAS  Google Scholar 

  30. Hoshikawa, T., Yoshioka, S., Kamijo, S. & Inoue, M. Photoinduced direct cyanation of C(sp3)–H bonds. Synthesis 45, 874–887 (2013).

    Article  CAS  Google Scholar 

  31. Bannon, A. W. et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 279, 77–80 (1998).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Badio, B., Garraffo, H. M., Plummer, C. V., Padgett, W. L. & Daly, J. W. Synthesis and nicotinic activity of epiboxidine: an isoxazole analogue of epibatidine. Eur. J. Pharmacol. 321, 189–194 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. de Oliveira Filho, R. E. & Omori, A. T. Recent syntheses of frog alkaloid epibatidine. J. Braz. Chem. Soc. 26, 837–850 (2015).

    Google Scholar 

Download references

Acknowledgements

The research reported here was supported by the National Institutes of Health National Institute of General Medical Sciences (R01 GM103558-03) and gifts from MSD, Bristol-Myers Squibb, Eli Lilly, Genentech, Pfizer and Johnson & Johnson. The authors thank C. Kraml, N. Byrne and L. Wilson (Lotus Separations) for compound purification and I. Pelczer for assistance in structure determination.

Author contributions

I.B.P., T.F.B., P.J.S. and D.M.S. performed and analysed the experiments. I.B.P., T.F.B., P.J.S., D.M.S., D.A.D. and D.W.C.M. designed the experiments. I.B.P., T.F.B., P.J.S. and D.W.C.M. prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Figures and Data; see contents page for details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, I.B., Brewer, T.F., Sarver, P.J. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018). https://doi.org/10.1038/s41586-018-0366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0366-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing