Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity

Abstract

The global biosphere is commonly assumed to have been less productive before the rise of complex eukaryotic ecosystems than it is today1. However, direct evidence for this assertion is lacking. Here we present triple oxygen isotope measurements (∆17O) from sedimentary sulfates from the Sibley basin (Ontario, Canada) dated to about 1.4 billion years ago, which provide evidence for a less productive biosphere in the middle of the Proterozoic eon. We report what are, to our knowledge, the most-negative ∆17O values (down to −0.88‰) observed in sulfates, except for those from the terminal Cryogenian period2. This observation demonstrates that the mid-Proterozoic atmosphere was distinct from what persisted over approximately the past 0.5 billion years, directly reflecting a unique interplay among the atmospheric partial pressures of CO2 and O2 and the photosynthetic O2 flux at this time3. Oxygenic gross primary productivity is stoichiometrically related to the photosynthetic O2 flux to the atmosphere. Under current estimates of mid-Proterozoic atmospheric partial pressure of CO2 (2–30 times that of pre-anthropogenic levels), our modelling indicates that gross primary productivity was between about 6% and 41% of pre-anthropogenic levels if atmospheric O2 was between 0.1–1% or 1–10% of pre-anthropogenic levels, respectively. When compared to estimates of Archaean4,5,6 and Phanerozoic primary production7, these model solutions show that an increasingly more productive biosphere accompanied the broad secular pattern of increasing atmospheric O2 over geologic time8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Triple oxygen isotope data over the past 1.5 billion years.
Fig. 2: Sulfur and oxygen isotope constraints on limited microbial sulfur cycling in the Sibley basin.
Fig. 3: Empirical probability densities of mid-Proterozoic GPP.

Similar content being viewed by others

References

  1. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504–506 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Cao, X. & Bao, H. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. Proc. Natl Acad. Sci. USA 110, 14546–14550 (2013).

    Article  ADS  PubMed  Google Scholar 

  4. Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

    Article  CAS  Google Scholar 

  5. Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. Lond. B 361, 1819–1836 (2006).

    Article  CAS  Google Scholar 

  6. Ward, L. M., Kirschvink, J. L. & Fischer, W. W. Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biosph. 46, 51–65 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Wing, B. A. A cold, hard look at ancient oxygen. Proc. Natl Acad. Sci. USA 110, 14514–14515 (2013).

    Article  ADS  PubMed  Google Scholar 

  8. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Article  ADS  CAS  Google Scholar 

  10. Sánchez-Baracaldo, P., Ridgwell, A. & Raven, J. A. A Neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Derry, L. A. Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett. 42, 8538–8546 (2015).

    Article  ADS  CAS  Google Scholar 

  12. Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Koehler, M. C. et al. Spatial and temporal trends in Precambrian nitrogen cycling: a Mesoproterozoic offshore nitrate minimum. Geochim. Cosmochim. Acta 198, 315–337 (2017).

    Article  ADS  CAS  Google Scholar 

  14. Buick, R., Des Marais, D. J. & Knoll, A. H. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. Chem. Geol. 123, 153–171 (1995).

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Wen, J. & Thiemens, M. H. Multi-isotope study of the O (1 D)+ CO2 exchange and stratospheric consequences. J. Geophys. Res. 98, 12801–12808 (1993).

    Article  ADS  Google Scholar 

  16. Yung, Y. L., DeMore, W. B. & Pinto, J. P. Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere. Geophys. Res. Lett. 18, 13–16 (1991).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Luz, B., Barkan, E., Bender, M. L., Thiemens, M. H. & Boering, K. A. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400, 547–550 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Bender, M., Sowers, T. & Labeyrie, L. The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Glob. Biogeochem. Cycles 8, 363–376 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Segura, A. et al. Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3, 689–708 (2003).

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Bao, H., Rumble, D. III & Lowe, D. R. The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim. Cosmochim. Acta 71, 4868–4879 (2007).

    Article  ADS  CAS  Google Scholar 

  21. Percak-Dennett, E. et al. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH. Geobiology 15, 690–703 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Balci, N., Shanks, W. C. III, Mayer, B. & Mandernack, K. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71, 3796–3811 (2007).

    Article  ADS  CAS  Google Scholar 

  23. Antler, G., Turchyn, A. V., Rennie, V., Herut, B. & Sivan, O. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim. Cosmochim. Acta 118, 98–117 (2013).

    Article  ADS  CAS  Google Scholar 

  24. Pellerin, A. et al. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: a case study from Mangrove Lake, Bermuda. Geochim. Cosmochim. Acta 149, 152–164 (2015).

    Article  ADS  CAS  Google Scholar 

  25. Pack, A. et al. Tracing the oxygen isotope composition of the upper Earth's atmosphere using cosmic spherules. Nat. Comm. 8, 15702 (2017).

    Article  ADS  CAS  Google Scholar 

  26. Hardie, L. A. The origin of the recent non-marine evaporite deposit of Saline Valley, Inyo County, California. Geochim. Cosmochim. Acta 32, 1279–1301 (1968).

    Article  ADS  Google Scholar 

  27. Ryu, J.-H., Zierenberg, R. A., Dahlgren, R. A. & Gao, S. Sulfur biogeochemistry and isotopic fractionation in shallow groundwater and sediments of Owens Dry Lake, California. Chem. Geol. 229, 257–272 (2006).

    Article  ADS  CAS  Google Scholar 

  28. Rogala, B., Fralick, P. W., Heaman, L. M. & Metsaranta, R. Lithostratigraphy and chemostratigraphy of the Mesoproterozoic Sibley Group, northwestern Ontario, Canada. Can. J. Earth Sci. 44, 1131–1149 (2007).

    Article  ADS  Google Scholar 

  29. Bao, H., Fairchild, I. J., Wynn, P. M. & Spötl, C. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science 323, 119–122 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  30. Johnston, D. T. et al. Active microbial sulfur disproportionation in the Mesoproterozoic. Science 310, 1477–1479 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  31. Kunzmann, M. et al. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology 41, 27–30 (2013).

    Article  ADS  CAS  Google Scholar 

  32. Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Ward, B. A., Dutkiewicz, S. & Follows, M. J. Modelling spatial and temporal patterns in size-structured marine plankton communities: top–down and bottom–up controls. J. Plankton Res. 36, 31–47 (2013).

    Article  Google Scholar 

  34. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  ADS  PubMed  CAS  Google Scholar 

  35. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  36. Close, H. G. et al. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. Proc. Natl Acad. Sci. USA 110, 12565–12570 (2013).

    Article  ADS  PubMed  Google Scholar 

  37. Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995).

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Close, H. G., Bovee, R. & Pearson, A. Inverse carbon isotope patterns of lipids and kerogen record heterogeneous primary biomass. Geobiology 9, 250–265 (2011).

    Article  PubMed  CAS  Google Scholar 

  39. Peng, Y., Bao, H., Zhou, C. & Yuan, X. 17O-depleted barite from two Marinoan cap dolostone sections, South China. Earth Planet. Sci. Lett. 305, 21–31 (2011).

    Article  ADS  CAS  Google Scholar 

  40. Killingsworth, B. A., Hayles, J. A., Zhou, C. & Bao, H. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event. Proc. Natl Acad. Sci. USA 110, 17686–17690 (2013).

    Article  ADS  PubMed  Google Scholar 

  41. Crockford, P. W. et al. Linking paleocontinents through triple oxygen isotope anomalies. Geology 46, 179–182 (2017).

    Article  ADS  Google Scholar 

  42. Crockford, P. W. et al. Triple oxygen and multiple sulfur isotope constraints on the evolution of the post-Marinoan sulfur cycle. Earth Planet. Sci. Lett. 435, 74–83 (2016).

    Article  ADS  CAS  Google Scholar 

  43. Bao, H., Chen, Z.-Q. & Zhou, C. An 17O record of late Neoproterozoic glaciation in the Kimberley region, Western Australia. Precambr. Res. 216–219, 152–161 (2012).

    Article  ADS  CAS  Google Scholar 

  44. Cowie, B. R. & Johnston, D. T. High-precision measurement and standard calibration of triple oxygen isotopic compositions (δ18O, Δ′17O) of sulfate by F2 laser fluorination. Chem. Geol. 440, 50–59 (2016).

    Article  ADS  CAS  Google Scholar 

  45. Sim, M. S., Bosak, T. & Ono, S. Large sulfur isotope fractionation does not require disproportionation. Science 333, 74–77 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  46. Davis, D. W. & Sutcliffe, R. H. U–Pb ages from the Nipigon plate and northern Lake Superior. Geol. Soc. Am. Bull. 96, 1572–1579 (1985).

    Article  ADS  CAS  Google Scholar 

  47. Franklin, J. M. in Rubidium–Strontium Isotopic Age Studies, Report 2 (eds Wanless, R. K. & Loveridge, W. D.) 77–14 (Geological Survey of Canada, Ottawa, 1978).

  48. Robertson, W. A. Pole position from thermally cleaned Sibley Group sediments and its relevance to Proterozoic magnetic stratigraphy. Can. J. Earth Sci. 10, 180–193 (1973).

    Article  ADS  Google Scholar 

  49. Elston, D. P., Enkin, R. J., Baker, J. D. & Kisilevsky, K. Tightening the belt: paleomagnetism-stratigraphic constraints on deposition, correlation, and deformation of the Middle Proterozoic (ca. 1.4 Ga) Belt-Purcell Supergroup, United States and Canada. Geol. Soc. Am. Bull. 114, 619–638 (2002).

    Article  ADS  Google Scholar 

  50. Cheadle, B. A. Alluvial-playa sedimentation in the lower Keweenawan Sibley Group, Thunder Bay District, Ontario. Can. J. Earth Sci. 23, 527–542 (1986).

    Article  ADS  Google Scholar 

  51. Metsaranta, R. T. Sedimentology and Geochemistry of the Mesoproterozoic Pass Lake and Rossport Formations, Sibley Group. MSc thesis, Lakehead Univ. (2006).

  52. Bao, H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal. Chem. 78, 304–309 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. Bao, H. & Thiemens, M. H. Generation of O2 from BaSO4 using a CO2-laser fluorination system for simultaneous analysis of δ18O and δ17O. Anal. Chem. 72, 4029–4032 (2000).

    Article  PubMed  CAS  Google Scholar 

  54. Matsuhisa, Y., Goldsmith, J. R. & Clayton, R. N. Mechanisms of hydrothermal crystallization of quartz at 250 °C and 15 kbar. Geochim. Cosmochim. Acta 42, 173–182 (1978).

    Article  ADS  CAS  Google Scholar 

  55. Cao, X. & Liu, Y. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes. Geochim. Cosmochim. Acta 75, 7435–7445 (2011).

    Article  ADS  CAS  Google Scholar 

  56. Bao, H., Cao, X. & Hayles, J. A. Triple oxygen isotopes: fundamental relationships and applications. Annu. Rev. Earth Planet. Sci. 44, 463–492 (2016).

    Article  ADS  CAS  Google Scholar 

  57. Miller, M. F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002).

    Article  ADS  CAS  Google Scholar 

  58. Angert, A., Rachmilevitch, S., Barkan, E. & Luz, B. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2. Glob. Biogeochem. Cycles 17, 1030 (2003).

    ADS  Google Scholar 

  59. Thode, H. G., Monster, J. & Dunford, H. B. Sulphur isotope geochemistry. Geochim. Cosmochim. Acta 25, 159–174 (1961).

    Article  ADS  CAS  Google Scholar 

  60. Shaheen, R., Janssen, C. & Röckmann, T. Investigations of the photochemical isotope equilibrium between O2, CO2 and O3. Atmos. Chem. Phys. 7, 495–509 (2007).

    Article  ADS  CAS  Google Scholar 

  61. von Paris, P. et al. Warming the early Earth—CO2 reconsidered. Planet. Space Sci. 56, 1244–1259 (2008).

    Article  ADS  CAS  Google Scholar 

  62. Wolf, E. T. & Toon, O. B. Controls on the Archean climate system investigated with a global climate model. Astrobiology 14, 241–253 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  63. Mills, B., Lenton, T. M. & Watson, A. J. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc. Natl Acad. Sci. USA 111, 9073–9078 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  64. Kaufman, A. J. & Xiao, S. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425, 279–282 (2003).

    Article  ADS  PubMed  CAS  Google Scholar 

  65. Sheldon, N. D. Causes and consequences of low atmospheric pCO2 in the Late Mesoproterozoic. Chem. Geol. 362, 224–231 (2013).

    Article  ADS  CAS  Google Scholar 

  66. Hansen, J. et al. Target atmospheric CO2: where should humanity aim? Open Atmos. Sci. J. 2, 217–231 (2008).

    Article  ADS  CAS  Google Scholar 

  67. Kasting, J. F. & Donahue, T. M. The evolution of atmospheric ozone. J. Geophys. Res. Oceans 85, 3255–3263 (1980).

    Article  ADS  CAS  Google Scholar 

  68. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  69. Horner, T. J. et al. Pelagic barite precipitation at micromolar ambient sulfate. Nat. Commun. 8, 1342 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  70. Holland, H. D., Feakes, C. R. & Zbinden, E. A. The Flin Flon paleosol and the composition of the atmosphere 1.8 BYBP. Am. J. Sci. 289, 362–389 (1989).

    Article  ADS  PubMed  CAS  Google Scholar 

  71. Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  72. Cole, D. B. et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44, 555–558 (2016).

    Article  ADS  CAS  Google Scholar 

  73. Gilleaudeau, G. J. et al. Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates. Geochem. Perspect. Lett. 2, 178–187 (2016).

    Article  Google Scholar 

  74. Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  75. Planavsky, N. J. et al. No evidence for high atmospheric oxygen levels 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, E2550–E2551 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. Liu, X. M. et al. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochem. Perspect. Lett. 2, 24–34 (2016).

    Article  Google Scholar 

  77. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Article  ADS  CAS  Google Scholar 

  78. Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl Acad. Sci. USA 110, 5357–5362 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  79. Cox, G. M. et al. Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chem. Geol. 440, 101–114 (2016).

    Article  ADS  CAS  Google Scholar 

  80. Daines, S. J., Mills, B. J. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  81. Runnegar, B. Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Global Planet. Change 5, 97–111 (1991).

    Article  ADS  Google Scholar 

  82. Sperling, E. A., Halverson, G. P., Knoll, A. H., Macdonald, F. A. & Johnston, D. T. A basin redox transect at the dawn of animal life. Earth Planet. Sci. Lett. 371–372, 143–155 (2013).

    Article  ADS  CAS  Google Scholar 

  83. Mills, D. B. et al. Oxygen requirements of the earliest animals. Proc. Natl Acad. Sci. USA 111, 4168–4172 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  84. Kohl, I. & Bao, H. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH= 2–11). Geochim. Cosmochim. Acta 75, 1785–1798 (2011).

    Article  ADS  CAS  Google Scholar 

  85. Hayles, J. A., Cao, X. & Bao, H. The statistical mechanical basis of the triple isotope fractionation relationship. Geochem. Perspect. Lett. 3, 1–11 (2017).

    Google Scholar 

  86. Trenberth, K. & Smith, E. L. The mass of the atmosphere: a constraint on global analyses. J. Clim. 18, 864–875 (2005).

    Article  ADS  Google Scholar 

  87. Linz, M. et al. The strength of the meridional overturning circulation of the stratosphere. Nat. Geosci. 10, 663–667 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  88. Butchart, N. et al. Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Clim. Dyn. 27, 727–741 (2006).

    Article  Google Scholar 

  89. Fiorella, R. P. & Sheldon, N. D. Equable end Mesoproterozoic climate in the absence of high CO2. Geology 45, 231–234 (2017).

    Article  ADS  CAS  Google Scholar 

  90. Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2018).

    Article  ADS  Google Scholar 

  91. Kah, L. C. & Riding, R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology 35, 799–802 (2007).

    Article  ADS  CAS  Google Scholar 

  92. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  ADS  PubMed  CAS  Google Scholar 

  93. Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  94. Zhang, S. et al. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences 14, 2133–2149 (2017).

Download references

Acknowledgements

P.W.C. acknowledges funding from a Natural Sciences and Engineering Research Council of Canada (NSERC) PGS-D grant. This research was supported by funding from NSERC, the Fonds de Recherche du Québec–Nature et Technologies, and the University of Colorado Boulder (B.A.W.). H.B. acknowledges funding from the strategic priority research program (B) of CAS (XDB18010104). We thank E. Wolf, N. Cowan, S. Becker, Y. Slichter and L. Derry for discussions on the assumptions, methods and implications of our study.

Reviewer information

Nature thanks B. Passey and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

P.W.C. and B.A.W. designed research. N.J.P., A.B. and P.W.F. provided samples. P.W.C., J.A.H., Y.P. and T.H.B. performed isotopic analyses. P.W.C. and B.A.W. conducted modelling. P.W.C. wrote the manuscript with contributions from B.A.W., N.J.P. and A.B., and input from all co-authors.

Corresponding author

Correspondence to Peter W. Crockford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Histograms of existing data for ∆17O values through Earth history.

The histograms show Phanerozoic sulfates2 (n = 51; light grey), syn-Marinoan CAS29 (n = 25; dark grey), post-Marinoan barite2,39,40,41,42 (n = 213; blue) and results from the Sibley sulfates (n = 68; red).

Extended Data Fig. 2 Compiled \({{\boldsymbol{p}}}_{{{\bf{CO}}}_{{\bf{2}}}}\) and \({{\boldsymbol{p}}}_{{{\bf{O}}}_{{\bf{2}}}}\) estimates.

a, \({p}_{{{\rm{CO}}}_{2}}\) estimates. Left y axis, percentage of PAL; right y axis, p.p.m. Grey band outlines results from 1D modelling61 based on temperatures of 273 K (bottom), 288 K (top) and changing solar luminosity. Red dotted lines represent extrapolated general circulation model (GCM) results62 from Archaean estimates. The green-shaded region represents the uncertainty envelope of palaeosol-based estimates65 with the green dotted lines interpolating between estimates at 1.8 and 1.1 Ga together. The pink-shaded region represents estimates based on the COPSE Earth system model63. The brown bar represents modelling-based estimates required to prevent a global glaciation at 1.1 Ga89. The dark-blue square is the microfossil-based estimate that sets maximum limits at 1.05 Ga90,91. Yellow arrows represent the upper (30 PAL) and lower (2 PAL) limits used in this work. Data are from previous publications61,62,63,65,89,91. b, \({p}_{{{\rm{O}}}_{2}}\) estimates. Green arrows represent biologically based estimates; blue arrows represent geochemical estimates; and in red are modelling \({p}_{{{\rm{O}}}_{2}}\) estimates. Purple lines represent the removal of S-MIF92, a proposed bistability field93, and constraints on the establishment of a modern-like ozone layer13,67. The yellow dashed line represents the suggested limits for the removal of deep ocean anoxia76, and the grey dashed line represents the appearance of charcoal. Data are from previous publications9,19,67,68,70,71,72,74,76,77,80,81,82,83,93,94.

Extended Data Fig. 3 Probability distribution functions for the control parameters of the model.

The justification for the form (Gaussian or uniform), the spread (standard deviation or range) and the mean of each distribution is given in the main text and Methods.

Extended Data Fig. 4 Realization of about 10,000 Monte Carlo calculations of GPP (PAL) relative to various control parameters in the isotope mass-balance model.

a, Unlike model calculations for the Neoproterozoic era, there is no clear strong dependence of GPP on assumed \({p}_{{{\rm{CO}}}_{2}}\). b, There is a clear log-linear dependence of the GPP estimates on \({p}_{{{\rm{O}}}_{2}}\). c, GPP responds weakly to \({f}_{{{\rm{O}}}_{2}}\), with large fractions of O2 in sulfate (which indicate smaller ∆17OO2 values) leading to higher estimates of GPP. d, The response of GPP to ∆17Osulfate is similar to the response to \({f}_{{{\rm{O}}}_{2}}\). Smaller ∆17Osulfate values indicate smaller ∆17OO2 values, which—all else being the same—requires greater GPP. e, GPP estimates seem to be largely independent of gamma.

Extended Data Fig. 5 Realization of about 20,000 Monte Carlo calculations of GPP (PAL) and \({{\boldsymbol{p}}}_{{{\bf{O}}}_{{\bf{2}}}}\).

a, Results are calculated to be consistent with the Δ17O measurements in Extended Data Table 1 and the probability distribution functions shown in Extended Data Fig. 2, with the exception of \({p}_{{{\rm{O}}}_{2}}\). These calculations assume restricted ranges of \({p}_{{{\rm{O}}}_{2}}\) between 0.1% and 1% PAL (orange histogram) and between 1% and 10% PAL (blue histogram). In both cases the bimodality seen in the full suite of Monte Carlo calculations (Fig. 3) disappears, and both sets of calculations are well-approximated by single-peaked Gaussian probability density functions. This confirms that \({p}_{{{\rm{O}}}_{2}}\) is the dominant control on the bimodal structure seen in the full suite of Monte Carlo calculations (Fig. 3), and justifies our division of those results into a pair of Gaussian probability density functions, one associated with \({p}_{{{\rm{O}}}_{2}}\) between 0.1% and 1% PAL and another associated with \({p}_{{{\rm{O}}}_{2}}\) between 1% and 10% PAL. b, Results are solutions that are consistent with the ∆17Osulfate dataset (Extended Data Table 1), the probability density functions shown in Extended Data Fig. 1 (with the exception of \({p}_{{{\rm{O}}}_{2}}\)) and the mean GPP estimates of the two inferred Gaussian probability distributions for mid-Proterozoic GPP (Fig. 3). GPP was allowed to vary in a Gaussian fashion between the 95% confidence limits on the GPP mean values.

Extended Data Fig. 6 Geological map of the Lake Nipigon–northern Lake Superior region.

This figure was adapted from a previous publication28. © 2008 Canadian Science Publishing or its licensors. Reproduced with permission.

Extended Data Fig. 7 Oxygen and sulfur isotope compositions (∆17O, δ18O, δ34S and ∆33S) for sulfates from drill hole NI-92-7 plotted against stratigraphic height.

Uncertainty on all analyses is smaller than the sizes of the data points.

Extended Data Table 1 Isotopic data and comparisons with previously published results
Extended Data Table 2 Summary of reference parameters for model calculations

Supplementary information

Supplementary Information

This file contains Supplementary Text including a discussion of data and model equations.

Reporting Summary

Supplementary Table

This file contains Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crockford, P.W., Hayles, J.A., Bao, H. et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–616 (2018). https://doi.org/10.1038/s41586-018-0349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0349-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology