Letter | Published:

Spontaneous emission of matter waves from a tunable open quantum system

Naturevolume 559pages589592 (2018) | Download Citation


The decay of an excited atom undergoing spontaneous photon emission into the fluctuating quantum-electrodynamic vacuum is an emblematic  example of the dynamics of an open quantum system. Recent experiments have demonstrated that the gapped photon dispersion in periodic structures, which prevents photons in certain frequency ranges from propagating, can give rise to unusual spontaneous-decay behaviour, including the formation of dissipative bound states1,2,3. So far, these effects have been restricted to the optical domain. Here we demonstrate similar behaviour in a system of artificial emitters, realized using ultracold atoms in an optical lattice, which decay by emitting matter-wave, rather than optical, radiation into free space. By controlling vacuum coupling and the excitation energy, we directly observe exponential and partly reversible non-Markovian dynamics and detect a tunable bound state that contains evanescent matter waves. Our system provides a flexible platform for simulating open-system quantum electrodynamics and for studying dissipative many-body physics with ultracold atoms4,5,6.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hoeppe, U. et al. Direct observation of non-Markovian radiation dynamics in 3D bulk photonic crystals. Phys. Rev. Lett. 108, 043603 (2012).

  2. 2.

    Hood, J. D. et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc. Natl Acad. Sci. USA 113, 10507–10512 (2016).

  3. 3.

    Liu, Y. & Houck, A. A. Quantum electrodynamics near a photonic bandgap. Nat. Phys. 13, 48–52 (2017).

  4. 4.

    de Vega, I., Porras, D. & Cirac, J. I. Matter-wave emission in optical lattices: single particle and collective effects. Phys. Rev. Lett. 101, 260404 (2008).

  5. 5.

    Navarrete-Benlloch, C., de Vega, I., Porras, D. & Cirac, J. I. Simulating quantum-optical phenomena with cold atoms in optical lattices. New J. Phys. 13, 023024 (2011).

  6. 6.

    Stewart, M., Krinner, L., Pazmiño, A. & Schneble, D. Analysis of non-Markovian coupling of a lattice-trapped atom to free space. Phys. Rev. A 95, 013626 (2017).

  7. 7.

    Weisskopf, V. & Wigner, E. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63, 54–73 (1930).

  8. 8.

    Milonni, P. W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic Press, San Diego, 1994).

  9. 9.

    Meystre, P. & Sargent, M. III Elements of Quantum Optics (Springer, Berlin, 2007).

  10. 10.

    Rivas, A., Huelga, S. F. & Plenio, M. B. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014).

  11. 11.

    Rotter, I. & Bird, J. P. A review of progress in the physics of open quantum systems: theory and experiment. Rep. Prog. Phys. 78, 114001 (2015).

  12. 12.

    Breuer, H.-P., Laine, E.-M., Piilo, J. & Vacchini, B. Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016).

  13. 13.

    de Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).

  14. 14.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

  15. 15.

    Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981).

  16. 16.

    Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

  17. 17.

    Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

  18. 18.

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, Oxford, 2006).

  19. 19.

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

  20. 20.

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

  21. 21.

    Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R. & Bay, S. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys. 63, 455–503 (2000).

  22. 22.

    Tocci, M. D., Scalora, M., Bloemer, M. J., Dowling, J. P. & Bowden, C. M. Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures. Phys. Rev. A 53, 2799–2803 (1996).

  23. 23.

    Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

  24. 24.

    Liu, Q. et al. Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3: Eu3+ inverse opal. Opt. Lett. 35, 2898–2900 (2010).

  25. 25.

    Bykov, V. P. Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861–871 (1975).

  26. 26.

    John, S. & Wang, J. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418–2421 (1990).

  27. 27.

    Douglas, J. S., Habibian, H., Hung, C.-L., Gorshkov, A. V., Kimble, H. J. & Chang, D. E. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

  28. 28.

    Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

  29. 29.

    Rzążerewski, K., Lewenstein, M. & Eberly, J. H. Threshold effects in strong-field photodetachment. J. Phys. B 15, L661–L667 (1982).

  30. 30.

    Lewenstein, M. & Rzążewski, K. Quantum anti-Zeno effect. Phys. Rev. A 61, 022105 (2000).

  31. 31.

    Bruderer, M., Klein, A. Clark, S. R. & Jaksch, D. Polaron physics in optical lattices. Phys. Rev. A 76, 011605, 2007.

  32. 32.

    Gadway, B., Pertot, D., Reimann, R. & Schneble, D. Superfluidity of interacting bosonic mixtures in optical lattices. Phys. Rev. Lett. 105, 045303 (2010).

  33. 33.

    Rentrop, T. et al. Observation of the phononic Lamb shift with a synthetic vacuum. Phys. Rev. X 6, 041041 (2016).

  34. 34.

    Pertot, D., Greif, D., Albert, S., Gadway, B. & Schneble, D. Versatile transporter apparatus for experiments with optically trapped Bose–Einstein condensates. J. Phys. B 42, 215305 (2009).

  35. 35.

    Campbell, G. K. et al. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649–652 (2006).

  36. 36.

    Gadway, B., Pertot, D., Reimann, R., Cohen, M. G. & Schneble, D. Analysis of Kapitza–Dirac diffraction patterns beyond the Raman–Nath regime. Opt. Express 17, 19173–19180 (2009).

  37. 37.

    Krinner, L., Stewart, M., Pazmiño, A. & Schneble, D. In situ magnetometry for experiments with atomic quantum gases. Rev. Sci. Instrum. 89, 013108 (2018).

  38. 38.

    Deng, L. et al. Temporal, matter-wave-dispersion Talbot effect. Phys. Rev. Lett. 83, 5407–5411 (1999).

Download references


We thank M. G. Cohen for discussions and a critical reading of the manuscript. This work was supported by NSF PHY-1607633. M.S. was supported by a GAANN fellowship by the US Department of Education. A.P. acknowledges partial support from ESPOL-SENESCYT.

Author information


  1. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA

    • Ludwig Krinner
    • , Michael Stewart
    • , Arturo Pazmiño
    • , Joonhyuk Kwon
    •  & Dominik Schneble


  1. Search for Ludwig Krinner in:

  2. Search for Michael Stewart in:

  3. Search for Arturo Pazmiño in:

  4. Search for Joonhyuk Kwon in:

  5. Search for Dominik Schneble in:


D.S., L.K. and M.S. conceived the experiment. L.K. took the measurements with assistance from A.P. and J.K. L.K. analysed the data with contributions from M.S. Numerical simulations were performed by L.K. D.S. supervised the project. The results were discussed and interpreted by all authors. The manuscript was written by L.K. and D.S. with contributions from A.P., J.K. and M.S.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Dominik Schneble.

Extended data figures and tables

  1. Extended Data Fig. 1 Average spectrum of coupling stationary atoms into the z lattice.

    The spectrum was generated from a series of 17 spectra taken over a one-day period, whose fitted centres are shifted to zero. The coupling strength is Ω = 740(10) Hz and the pulse time is 400 μs, with the data points binned into 300-Hz-wide bins. The solid curve is a fit to the data with Ω as a free-fitting parameter and the dashed curve has no free parameters. The effective coupling strength was calculated using the wavefunction overlap between free and trapped species, γ0 = 0.72.

  2. Extended Data Fig. 2 Raw momentum spectrum.

    The spectrum shows a detuning-independent, diffuse background of roughly 103 atoms. The spectrum was acquired as described in the main text, Fig. 2 and Methods; colour scale is identical to Fig. 2c.

  3. Extended Data Fig. 3 Raw data used to obtain the energy shift.

    a, b, Second moment of k (a) and half-separation squared (b) both subtracted by Δ/(2π). The detuning Δ/(2π) is 1.0 kHz (black disks), 2.0 kHz (red triangles), 4.0 kHz (green squares) and 6.0 kHz (blue circles). Points in brackets correspond to the non-Markovian regime, Ω/Δ > 1.

  4. Extended Data Fig. 4 Simulated decay dynamics for a 1-site and a 3-site model (with the central site initially populated).

    a, Dynamics of the two models, as depicted in the insets, for Δ = 2π × 1.9 kHz and Ω = 2π × 0.74 kHz, with ωz = 2π × 0.1 kHz. b, Long-time decay dynamics of the 1-site (black) and 3-site (red) models for Ω = 2π × 0.74 kHz and Δ = 2π × 1.9 kHz, with ωz = 2π × 5 Hz. The dashed red line shows the population of the central, initially populated, site; the dotted red line shows the population of the neighbouring sites. c, Dynamics of the two models for Δ = −2π × 0.1 kHz and Ω = 2π × 3 kHz, with ωz = 2π × 0.1 kHz.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.