Review Article | Published:

Challenges and recent progress in drug discovery for tropical diseases

Naturevolume 559pages498506 (2018) | Download Citation


Infectious tropical diseases have a huge effect in terms of mortality and morbidity, and impose a heavy economic burden on affected countries. These diseases predominantly affect the world’s poorest people. Currently available drugs are inadequate for the majority of these diseases, and there is an urgent need for new treatments. This Review discusses some of the challenges involved in developing new drugs to treat these diseases and highlights recent progress. While there have been notable successes, there is still a long way to go.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    World Health Organization. Global Health Estimates 2015: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2015. (World Health Organization, Geneva, 2016).

  2. 2.

    World Health Organization. Global Health Estimates 2015: Disease burden by Cause, Age, Sex, by Country and by Region, 2000–2015. (World Health Organization, Geneva, 2016).

  3. 3.

    World Health Organization. Neglected Tropical Diseases (2018).

  4. 4.

    Shepard, D. S., Undurraga, E. A., Halasa, Y. A. & Stanaway, J. D. The global economic burden of dengue: a systematic analysis. Lancet Infect. Dis. 16, 935–941 (2016).

  5. 5.

    Conteh, L., Engels, T. & Molyneux, D. H. Socioeconomic aspects of neglected tropical diseases. Lancet 375, 239–247 (2010).

  6. 6.

    G-Finder. Neglected Disease Research and Development: Reflecting on a Decade of Global Investment. (Policy Cures Research, Brisbane, 2017).

  7. 7.

    IPFMA. The Pharmaceutical Industry and Global Health. Facts and Figures 2017. (International Federation of Pharmaceutical Manufacturers & Associations, Geneva, 2017).

  8. 8.

    Wyatt, P. G., Gilbert, I. H., Read, K. D. & Fairlamb, A. H. Target validation: linking target and chemical properties to desired product profile. Curr. Top. Med. Chem. 11, 1275–1283 (2011).

  9. 9.

    Burrows, J. N. et al. New developments in anti-malarial target candidate and product profiles. Malar. J. 16, 26 (2017). A comprehensive discussion of target product and target candidate profiles for malaria.

  10. 10.

    DNDi. Diseases & Projects. (2018).

  11. 11.

    Chatelain, E. Chagas disease drug discovery: toward a new era. J. Biomol. Screen. 20, 22–35 (2015).

  12. 12.

    Huston, C. D. et al. A proposed target product profile and developmental cascade for new cryptosporidiosis treatments. PLoS Negl. Trop. Dis. 9, e0003987 (2015).

  13. 13.

    Whitehorn, J. et al. Dengue therapeutics, chemoprophylaxis, and allied tools: state of the art and future directions. PLoS Negl. Trop. Dis. 8, e3025 (2014).

  14. 14.

    Pawlowic, M. C., Vinayak, S., Sateriale, A., Brooks, C. F. & Striepen, B. Generating and maintaining transgenic Cryptosporidium parvum parasites. Curr. Protoc. Microbiol. 46, 20B.2.1–20B.2.32 (2017).

  15. 15.

    Bushell, E. et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170, 260–272 (2017).

  16. 16.

    de Koning-Ward, T. F., Gilson, P. R. & Crabb, B. S. Advances in molecular genetic systems in malaria. Nat. Rev. Microbiol. 13, 373–387 (2015).

  17. 17.

    Lander, N., Chiurillo, M. A. & Docampo, R. Genome editing by CRISPR/Cas9: a game change in the genetic manipulation of protists. J. Eukaryot. Microbiol. 63, 679–690 (2016).

  18. 18.

    Wang, Y. et al. A ‘suicide’ CRISPR–Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci. Rep. 6, 31145 (2016).

  19. 19.

    Zheng, W., Thorne, N. & McKew, J. C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 18, 1067–1073 (2013).

  20. 20.

    Ang, M. L. & Pethe, K. Contribution of high-content imaging technologies to the development of anti-infective drugs. Cytometry A 89, 755–760 (2016).

  21. 21.

    Horvath, P. et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15, 751–769 (2016).

  22. 22.

    Fux, C. A., Shirtliff, M., Stoodley, P. & Costerton, J. W. Can laboratory reference strains mirror ‘real-world’ pathogenesis? Trends Microbiol. 13, 58–63 (2005).

  23. 23.

    Angulo-Barturen, I. et al. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS ONE 3, e2252 (2008). Description of a humanized mouse model for P. falciparum malaria.

  24. 24.

    Mikolajczak, S. A. et al. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17, 526–535 (2015).

  25. 25.

    Zhan, L. J., Tang, J., Sun, M. M. & Qin, C. Animal models for tuberculosis in translational and precision medicine. Front. Microbiol. 8, 717 (2017).

  26. 26.

    Kramnik, I. & Beamer, G. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin. Immunopathol. 38, 221–237 (2016).

  27. 27.

    Myllymaki, H., Niskanen, M., Oksanen, K. E. & Ramet, M. Animal models in tuberculosis research—where is the beef? Expert Opin. Drug Discov. 10, 871–883 (2015).

  28. 28.

    Francisco, A. F. et al. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob. Agents Chemother. 59, 4653–4661 (2015).

  29. 29.

    White, N. J. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar. J. 10, 297 (2011).

  30. 30.

    Barry, C. E. III et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845 (2009).

  31. 31.

    Sanchez-Valdez, F. J., Padilla, A., Wang, W., Orr, D. & Tarleton, R. L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife 7, e34039 (2018).

  32. 32.

    Silver, L. L. A Gestalt approach to Gram-negative entry. Bioorg. Med. Chem. 24, 6379–6389 (2016). A description of the barriers to compound penetration in Gram-negative bacteria.

  33. 33.

    Brown, D. G., May-Dracka, T. L., Gagnon, M. M. & Tommasi, R. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J. Med. Chem. 57, 10144–10161 (2014).

  34. 34.

    Sarathy, J. P. et al. Prediction of drug penetration in tuberculosis lesions. ACS Infect. Dis. 2, 552–563 (2016).

  35. 35.

    Fromm, M. F. Importance of P-glycoprotein at blood–tissue barriers. Trends Pharmacol. Sci. 25, 423–429 (2004).

  36. 36.

    Woodford, N. & Ellington, M. J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 13, 5–18 (2007).

  37. 37.

    Irwin, K. K., Renzette, N., Kowalik, T. F. & Jensen, J. D. Antiviral drug resistance as an adaptive process. Virus Evol. 2, vew014 (2016).

  38. 38.

    Blasco, B., Leroy, D. & Fidock, D. A. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat. Med. 23, 917–928 (2017).

  39. 39.

    Hammer, S. M. et al. Treatment for adult HIV infection: 2006 recommendations of the international AIDS society—USA panel. J. Am. Med. Assoc. 296, 827–843 (2006).

  40. 40.

    World Health Organization. World Malaria Report 2017. (World Health Organization, Geneva, 2017).

  41. 41.

    Wells, T. N., Hooft van Huijsduijnen, R. & Van Voorhis, W. C. Malaria medicines: a glass half full? Nat. Rev. Drug Discov. 14, 424–442 (2015).

  42. 42.

    White, N. J. et al. Antimalarial activity of KAF156 in falciparum and vivax malaria. N. Engl. J. Med. 375, 1152–1160 (2016).

  43. 43.

    Macintyre, F. et al. A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med. 15, 181 (2017).

  44. 44.

    White, N. J. et al. Spiroindolone KAE609 for falciparum and vivax malaria. N. Engl. J. Med. 371, 403–410 (2014).

  45. 45.

    Paquet, T. et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med. 9, eaad9735 (2017).

  46. 46.

    Lim, M. Y. et al. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat. Microbiol, 1, 16166 (2016).

  47. 47.

    Jimenez-Diaz, M. B. et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl Acad. Sci. USA 111, E5455–E5462 (2014).

  48. 48.

    Baragana, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).

  49. 49.

    McCarthy, J. S. et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect. Dis. 17, 626–635 (2017). A description of a clinical trial for an antimalarial that includes a human challenge trial.

  50. 50.

    Cowell, A. N. et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359, 191–199 (2018).

  51. 51.

    Plouffe, D. M. et al. High-throughput assay and discovery of small molecules that interrupt malaria transmission. Cell Host Microbe 19, 114–126 (2016).

  52. 52.

    Hovlid, M. L. & Winzeler, E. A. Phenotypic screens in antimalarial drug discovery. Trends Parasitol. 32, 697–707 (2016).

  53. 53.

    McCarthy, J. S. et al. Linking murine and human Plasmodium falciparum challenge models in a translational path for antimalarial drug development. Antimicrob. Agents Chemother. 60, 3669–3675 (2016).

  54. 54.

    Stanisic, D. I., McCarthy, J. S. & Good, M. F. Controlled human malaria infection: applications, advances, and challenges. Infect. Immun. 86, e00479-17 (2018).

  55. 55.

    Amadi, B. et al. High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial. BMC Infect. Dis. 9, 195 (2009).

  56. 56.

    Manjunatha, U. H., Chao, A. T., Leong, F. J. & Diagana, T. T. Cryptosporidiosis drug discovery: opportunities and challenges. ACS Infect. Dis. 2, 530–537 (2016).

  57. 57.

    Hulverson, M. A. et al. Bumped-kinase inhibitors for cryptosporidiosis therapy. J. Infect. Dis. 215, 1275–1284 (2017). Description of development of a series of compounds against cryptosporidiosis.

  58. 58.

    Manjunatha, U. H. et al. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature 546, 376–380 (2017). Description of the discovery of a preclinical candidate for cryptosporidiosis by re-purposing of a series initially developed for malaria.

  59. 59.

    Love, M. S. et al. A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl. Trop. Dis. 11, e0005373 (2017).

  60. 60.

    Field, M. C. et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol. 15, 217–231 (2017). A review encompassing drug discovery for the kinetoplastids.

  61. 61.

    Buscher, P., Cecchi, G., Jamonneau, V. & Priotto, G. Human African trypanosomiasis. Lancet 390, 2397–2409 (2017).

  62. 62.

    Priotto, G. et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374, 56–64 (2009).

  63. 63.

    Njamnshi, A. K., Gettinby, G. & Kennedy, P. G. E. The challenging problem of disease staging in human African trypanosomiasis (sleeping sickness): a new approach to a circular question. Trans. R. Soc. Trop. Med. Hyg. 111, 199–203 (2017).

  64. 64.

    Steinmann, P., Stone, C. M., Sutherland, C. S., Tanner, M. & Tediosi, F. Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense. Trop. Med. Int. Health 20, 707–718 (2015).

  65. 65.

    Torreele, E. et al. Fexinidazole—a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl. Trop. Dis. 4, e923 (2010).

  66. 66.

    Mesu, V. et al. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial. Lancet 391, 144–154 (2018). Results from a human African trypanosomiasis clinical trial demonstrating non-inferiority of fexinidazole compared to NECT treatment.

  67. 67.

    Jacobs, R. T. et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl. Trop. Dis. 5, e1151 (2011).

  68. 68.

    Singh, O. P., Hasker, E., Boelaert, M. & Sundar, S. Elimination of visceral leishmaniasis on the Indian subcontinent. Lancet Infect. Dis. 16, e304–e309 (2016).

  69. 69.

    DNDi. DNDi Portfolio 2017 (2017).

  70. 70.

    Khare, S. et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537, 229–233 (2016).

  71. 71.

    Chatelain, E. Chagas disease research and development: is there light at the end of the tunnel? Comput. Struct. Biotechnol. J. 15, 98–103 (2017).

  72. 72.

    Molina, I. et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N. Engl. J. Med. 370, 1899–1908 (2014).

  73. 73.

    Ford, N. et al. The WHO public health approach to HIV treatment and care: looking back and looking ahead. Lancet Infect. Dis. 18, e76–e86 (2018).

  74. 74.

    Meanwell, N. A. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing hepatitis C virus infection with direct-acting antiviral agents: the arc of a medicinal chemistry triumph. J. Med. Chem. 59, 7311–7351 (2016).

  75. 75.

    Basile, K., Kok, J. & Dwyer, D. E. Zika virus: what, where from and where to? Pathology 49, 698–706 (2017).

  76. 76.

    Wahid, B., Ali, A., Rafique, S. & Idrees, M. Global expansion of chikungunya virus: mapping the 64-year history. Int. J. Infect. Dis. 58, 69–76 (2017).

  77. 77.

    Gyawali, N., Bradbury, R. S. & Taylor-Robinson, A. W. The epidemiology of dengue infection: harnessing past experience and current knowledge to support implementation of future control strategies. J. Vector Borne Dis. 53, 293–304 (2016).

  78. 78.

    Coltart, C. E., Lindsey, B., Ghinai, I., Johnson, A. M. & Heymann, D. L. The Ebola outbreak, 2013–2016: old lessons for new epidemics. Phil. Trans. R. Soc. Lond. B 372, 20160297 (2017).

  79. 79.

    de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534 (2016).

  80. 80.

    Boldescu, V., Behnam, M. A. M., Vasilakis, N. & Klein, C. D. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat. Rev. Drug Discov. 16, 565–586 (2017).

  81. 81.

    Sissoko, D. et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med. 13, e1001967 (2016).

  82. 82.

    Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381–385 (2016).

  83. 83.

    Check Hayden, E. Experimental drugs poised for use in Ebola outbreak. Nature 557, 475–476 (2018).

  84. 84.

    Taylor, R. et al. BCX4430 — a broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J. Infect. Public Health 9, 220–226 (2016).

  85. 85.

    Warren, T. K. et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 508, 402–405 (2014).

  86. 86.

    Debing, Y., Neyts, J. & Delang, L. The future of antivirals: broad-spectrum inhibitors. Curr. Opin. Infect. Dis. 28, 596–602 (2015).

  87. 87.

    Hoagland, D. T., Liu, J., Lee, R. B. & Lee, R. E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 102, 55–72 (2016).

  88. 88.

    Lamprecht, D. A. et al. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat. Commun. 7, 12393 (2016).

  89. 89.

    Kakkar, A. K. & Dahiya, N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis 94, 357–362 (2014).

  90. 90.

    Matsumoto, M. et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3, e466 (2006).

  91. 91.

    Olaru, I. D. et al. Novel drugs against tuberculosis: a clinician’s perspective. Eur. Respir. J. 45, 1119–1131 (2015).

  92. 92.

    Lee, M. et al. Linezolid for XDR-TB—final study outcomes. N. Engl. J. Med. 373, 290–291 (2015).

  93. 93.

    Li, X. et al. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J. Med. Chem. 60, 8011–8026 (2017).

  94. 94.

    World Health Organization. Global Tuberculosis Report 2017. (World Health Organization, Geneva, 2017).

  95. 95.

    Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

  96. 96.

    World Health Organization. Antibacterial Agents in Clinical Development: an Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis. (World Health Organization, Geneva, 2017).

  97. 97.

    Baker, S. et al. Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure. eLife 2, e01229 (2013).

  98. 98.

    Wong, V. K. et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat. Genet. 47, 632–639 (2015).

  99. 99.

    Hotez, P. J. et al. Helminth infections: the great neglected tropical diseases. J. Clin. Invest. 118, 1311–1321 (2018).

  100. 100.

    Moser, W. et al. Efficacy and safety of tribendimidine, tribendimidine plus ivermectin, tribendimidine plus oxantel pamoate, and albendazole plus oxantel pamoate against hookworm and concomitant soil-transmitted helminth infections in Tanzania and Cote d’Ivoire: a randomised, controlled, single-blinded, non-inferiority trial. Lancet Infect. Dis. 17, 1162–1171 (2017).

  101. 101.

    Sayasone, S. et al. Efficacy and safety of tribendimidine versus praziquantel against Opisthorchis viverrini in Laos: an open-label, randomised, non-inferiority, phase 2 trial. Lancet Infect. Dis. 18, 155–161 (2018).

  102. 102.

    Xiao, S. H., Utzinger, J., Tanner, M., Keiser, J. & Xue, J. Advances with the Chinese anthelminthic drug tribendimidine in clinical trials and laboratory investigations. Acta Trop. 126, 115–126 (2013). A comprehensive review of the discovery and development of tribendimidine, the first new anthelminthic in 30 years.

  103. 103.

    Moser, W. et al. Efficacy and safety of oxantel pamoate in school-aged children infected with Trichuris trichiura on Pemba Island, Tanzania: a parallel, randomised, controlled, dose-ranging study. Lancet Infect. Dis. 16, 53–60 (2016).

  104. 104.

    Moser, W. et al. Efficacy and tolerability of triple drug therapy with albendazole, pyrantel pamoate, and oxantel pamoate compared with albendazole plus oxantel pamoate, pyrantel pamoate plus oxantel pamoate, and mebendazole plus pyrantel pamoate and oxantel pamoate against hookworm infections in school-aged children in Laos: a randomised, single-blind trial. Lancet Infect. Dis. 18, 729–737 (2018).

  105. 105.

    Awadzi, K., Opoku, N. O., Attah, S. K., Lazdins-Helds, J. & Kuesel, A. C. A randomized, single-ascending-dose, ivermectin-controlled, double-blind study of moxidectin in Onchocerca volvulus infection. PLoS Negl. Trop. Dis. 8, e2953 (2014).

  106. 106.

    Keiser, J. et al. Praziquantel, mefloquine–praziquantel, and mefloquine–artesunate–praziquantel against Schistosoma haematobium: a randomized, exploratory, open-label trial. PLoS Negl. Trop. Dis. 8, e2975 (2014).

  107. 107.

    Klarmann-Schulz, U. et al. Comparison of doxycycline, minocycline, doxycycline plus albendazole and albendazole alone in their efficacy against onchocerciasis in a randomized, open-label, pilot trial. PLoS Negl. Trop. Dis. 11, e0005156 (2017).

  108. 108.

    Guidi, A. et al. Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production. PLoS Negl. Trop. Dis. 11, e0005994 (2017).

  109. 109.

    Mansour, N. R. et al. High throughput screening identifies novel lead compounds with activity against larval, juvenile and adult Schistosoma mansoni. PLoS Negl. Trop. Dis. 10, e0004659 (2016).

  110. 110.

    Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–881 (2017).

  111. 111.

    Perfect, J. R. The antifungal pipeline: a reality check. Nat. Rev. Drug Discov. 16, 603–616 (2017).

  112. 112.

    Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case–control study. Lancet 382, 209–222 (2013). The results of a clinical study into enteric diseases in LMICs.

  113. 113.

    Liu, J. et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case–control study. Lancet 388, 1291–1301 (2016).

  114. 114.

    Hotez, P. J., Fenwick, A., Savioli, L. & Molyneux, D. H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373, 1570–1575 (2009).

  115. 115.

    Checkley, W. et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect. Dis. 15, 85–94 (2015).

  116. 116.

    Kublin, J. G. et al. Effect of Plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. Lancet 365, 233–240 (2005).

  117. 117.

    Mayer, K. H. & Dukes Hamilton, C. Synergistic pandemics: confronting the global HIV and tuberculosis epidemics. Clin. Infect. Dis. 50, S67–S70 (2010).

  118. 118.

    Brooker, S. et al. Epidemiology of Plasmodium–helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am. J. Trop. Med. Hyg. 77, 88–98 (2007).

  119. 119.

    Blanc, F. X. et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N. Engl. J. Med. 365, 1471–1481 (2011).

  120. 120.

    Josephson, F. Drug–drug interactions in the treatment of HIV infection: focus on pharmacokinetic enhancement through CYP3A inhibition. J. Intern. Med. 268, 530–539 (2010).

  121. 121.

    Pion, S. D. et al. Co-infection with Onchocerca volvulus and Loa loa microfilariae in central Cameroon: are these two species interacting? Parasitology 132, 843–854 (2006).

  122. 122.

    Hoerauf, A., Pfarr, K., Mand, S., Debrah, A. Y. & Specht, S. Filariasis in Africa—treatment challenges and prospects. Clin. Microbiol. Infect. 17, 977–985 (2011).

  123. 123.

    Song, T. et al. Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis. EBioMedicine 2, 1627–1633 (2015).

  124. 124.

    Tiberi, S. et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis 18, e183–e198 (2018).

Download references


We acknowledge the following organizations that have supported our drug-discovery efforts for some of these diseases: Wellcome Trust, Medicines for Malaria Venture, the Bill and Melinda Gates Foundation and Drugs for Neglected Diseases initiative. We thank members of the Drug Discovery Unit for helpful discussions and K. Read, S. Green and S. Wyllie for reading the manuscript.

Reviewer information

Nature thanks B. Melillo, E. Winzeler and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK

    • Manu De Rycker
    • , Beatriz Baragaña
    •  & Ian H. Gilbert
  2. Medicines Monitoring Unit (MEMO), Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK

    • Suzanne L. Duce


  1. Search for Manu De Rycker in:

  2. Search for Beatriz Baragaña in:

  3. Search for Suzanne L. Duce in:

  4. Search for Ian H. Gilbert in:


All the authors contributed to writing the text.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Ian H. Gilbert.

About this article

Publication history






By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.