Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The future of hyperdiverse tropical ecosystems

Abstract

The tropics contain the overwhelming majority of Earth’s biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds. However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities. Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The tropical biosphere.
Fig. 2: Tropical hyperdiversity.
Fig. 3: Vulnerability of tropical biota to local and climatic stressors.
Fig. 4: Tropical ecosystems in transition.
Fig. 5: Socio-economic drivers of biodiversity loss and societal response capacities.

References

  1. 1.

    United Nations General Assembly. Transforming our world: the 2030 Agenda for Sustainable Development (United Nations, New York, 2015).

    Google Scholar 

  2. 2.

    Edelman, A. et al. State of the Tropics: 2014 Report (James Cook Univ., Cairns, 2014).

    Google Scholar 

  3. 3.

    Moreau, C. S. & Bell, C. D. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).

    PubMed  Article  Google Scholar 

  4. 4.

    Jablonski, D. et al. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    PubMed  Article  ADS  CAS  Google Scholar 

  5. 5.

    DeGraaf, R. M. & Rappole, J. H. Neotropical Migratory Birds: Natural History, Distribution, and Population Change (Cornell Univ. Press, Ithaca, 1995).

    Google Scholar 

  6. 6.

    Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos 118, 624–626 (2009).

    Article  Google Scholar 

  7. 7.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    PubMed  Article  ADS  CAS  Google Scholar 

  8. 8.

    Chown, S. L., Gaston, K. J. & Williams, P. H. Global patterns in species richness of pelagic seabirds: the Procellariiformes. Ecography 21, 342–350 (1998).

    Article  Google Scholar 

  9. 9.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011). This study develops a new method to quantify the completeness of taxonomic inventories.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Tancoigne, E. & Dubois, A. Taxonomy: no decline, but inertia. Cladistics 29, 567–570 (2013).

    Article  Google Scholar 

  11. 11.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    PubMed  Article  ADS  Google Scholar 

  12. 12.

    Guénard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012). This paper identifies hotspots of discovery for ant species.

    PubMed  Article  ADS  Google Scholar 

  13. 13.

    Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mamm. 99, 1–14 (2018). This paper shows that the Neotropics and Afrotropics contain the highest number of newly recognized mammal species.

    Article  Google Scholar 

  14. 14.

    Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Agnarsson, I., Coddington, J. A. & Kuntner, M. in Spider Research in the 21st Century: Trends and Perspectives (ed. Penney, D.) 58–111 (Siri Scientific, Rochdale, 2013).

  16. 16.

    Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: addressing disparity in global monitoring. Trop. Conserv. Sci. 1, 75–88 (2008).

    Article  Google Scholar 

  17. 17.

    Fisher, R. et al. Global mismatch between research effort and conservation needs of tropical coral reefs. Conserv. Lett. 4, 64–72 (2011).

    Article  Google Scholar 

  18. 18.

    Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).

    MathSciNet  PubMed  Article  Google Scholar 

  19. 19.

    Barlow, J., Overal, W. L., Araujo, I. S., Gardner, T. A. & Peres, C. A. The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. J. Appl. Ecol. 44, 1001–1012 (2007).

    Article  Google Scholar 

  20. 20.

    Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. 8, 4920 (2018).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  21. 21.

    Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evol. Ecol. Res. 4, 371–383 (2002).

    Google Scholar 

  22. 22.

    Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 20th edn (SIL International, Dallas, 2018).

    Google Scholar 

  23. 23.

    Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    PubMed  Article  ADS  CAS  Google Scholar 

  24. 24.

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (WRI, Washington, D.C., 2011).

    Google Scholar 

  25. 25.

    Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    PubMed  Article  ADS  CAS  Google Scholar 

  27. 27.

    Grace, J., San José, J., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).

    Article  Google Scholar 

  28. 28.

    van der Ent, R. J., Savenije, H. H. G. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Wat. Resour. Res. 46, W09525 (2010). This study shows the importance of tropical forests for precipitation in extra-tropical regions.

    ADS  Google Scholar 

  29. 29.

    IUCN. IUCN Spatial Data. http://www.iucnredlist.org/technical-documents/spatial-data (2018).

  30. 30.

    Régnier, C. et al. Mass extinction in poorly known taxa. Proc. Natl Acad. Sci. USA 112, 7761–7766 (2015).

    PubMed  Article  ADS  CAS  Google Scholar 

  31. 31.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 401, 401–406 (2014).

    Article  ADS  CAS  Google Scholar 

  32. 32.

    Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage. 352, 9–20 (2015).

    Article  Google Scholar 

  33. 33.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2, 81–98 (2015).

    Article  Google Scholar 

  34. 34.

    Pelicice, F. M., Pompeu, P. S. & Agostinho, A. A. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 16, 697–715 (2015).

    Article  Google Scholar 

  35. 35.

    Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. Proc. Natl Acad. Sci. USA 113, 14544–14551 (2016).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    PubMed  PubMed Central  ADS  CAS  Google Scholar 

  37. 37.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    PubMed  Article  ADS  CAS  Google Scholar 

  38. 38.

    Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).

    Article  ADS  Google Scholar 

  39. 39.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  40. 40.

    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).

    PubMed  Article  ADS  CAS  Google Scholar 

  41. 41.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    PubMed  Article  Google Scholar 

  42. 42.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide behavior, fate, and effects in the tropics: an overview of the current state of knowledge. J. Agric. Food Chem. 64, 3917–3924 (2016).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).

    Article  Google Scholar 

  45. 45.

    Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  46. 46.

    Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by scleractinian corals. Mar. Biol. 162, 725–732 (2015).

    Article  CAS  Google Scholar 

  47. 47.

    Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science 359, 460–462 (2018).

    PubMed  Article  ADS  CAS  Google Scholar 

  48. 48.

    Garcia, L. C., Ribeiro, D. B., de Oliveira Roque, F., Ochoa-Quintero, J. M. & Laurance, W. F. Brazil’s worst mining disaster: corporations must be compelled to pay the actual environmental costs. Ecol. Appl. 27, 5–9 (2017).

    PubMed  Article  Google Scholar 

  49. 49.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    PubMed  Article  ADS  CAS  Google Scholar 

  50. 50.

    Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229 (2013).

    Article  Google Scholar 

  51. 51.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  52. 52.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Ingram, D. J. et al. Assessing Africa-wide pangolin exploitation by scaling local data. Conserv. Lett. 11, e12389 (2017).

    Article  Google Scholar 

  54. 54.

    Eaton, J. A. et al. Trade-driven extinctions and near-extinctions of avian taxa in Sundaic Indonesia. Forktail 31, 1–12 (2015).

    Google Scholar 

  55. 55.

    Barrett, M. A., Brown, J. L., Morikawa, M. K., Labat, J.-N. & Yoder, A. D. CITES designation for endangered rosewood in Madagascar. Science 328, 1109–1110 (2010).

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).

    Article  Google Scholar 

  58. 58.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    PubMed  Article  Google Scholar 

  59. 59.

    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  60. 60.

    Pyšek, P. et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23, 237–244 (2008).

    PubMed  Article  Google Scholar 

  61. 61.

    Nghiem, T. P. et al. Economic and environmental impacts of harmful non-indigenous species in southeast Asia. PLoS ONE 8, e71255 (2013).

    PubMed Central  Article  ADS  CAS  Google Scholar 

  62. 62.

    Setterfield, S. A., Rossiter-Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).

    Article  Google Scholar 

  63. 63.

    Albins, M. A. & Hixon, M. A. Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ. Biol. Fishes 96, 1151–1157 (2013).

    Article  Google Scholar 

  64. 64.

    Hecky, R. E., Mugidde, R., Ramlal, P. S., Talbot, M. R. & Kling, G. W. Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshw. Biol. 55, 19–42 (2010).

    Article  Google Scholar 

  65. 65.

    Drake, J. M. & Lodge, D. M. Global hot spots of biological invasions: evaluating options for ballast-water management. Proc. R. Soc. Lond. B 271, 575–580 (2004).

    Article  Google Scholar 

  66. 66.

    Albright, R. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 531, 362–365 (2016).

    PubMed  Article  ADS  CAS  Google Scholar 

  67. 67.

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).

    PubMed  Article  Google Scholar 

  68. 68.

    Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014). This analysis highlights the importance of grassy tropical ecosystems.

    PubMed  Article  Google Scholar 

  69. 69.

    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).

    Article  Google Scholar 

  70. 70.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. (2018).

  71. 71.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

    PubMed  Article  ADS  CAS  Google Scholar 

  72. 72.

    Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 034009 (2011).

    Article  ADS  Google Scholar 

  73. 73.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011).

    Article  ADS  Google Scholar 

  75. 75.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    PubMed  Article  ADS  CAS  Google Scholar 

  76. 76.

    Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Chang. 3, 239–243 (2013).

    Article  ADS  Google Scholar 

  78. 78.

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    PubMed  Article  ADS  CAS  Google Scholar 

  79. 79.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    PubMed  Article  ADS  CAS  Google Scholar 

  80. 80.

    Jensen, M. P. et al. Environmental warming and feminization of one of the largest sea turtle populations in the world. Curr. Biol. 28, 154–159 (2018).

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Woodroffe, R., Groom, R. & McNutt, J. W. Hot dogs: high ambient temperatures impact reproductive success in a tropical carnivore. J. Anim. Ecol. 86, 1329–1338 (2017).

    PubMed  Article  Google Scholar 

  82. 82.

    Castello, L. & Macedo, M. N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 22, 990–1007 (2016).

    Article  Google Scholar 

  83. 83.

    Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Chang. 7, 133–136 (2017).

    Article  ADS  Google Scholar 

  84. 84.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B 283, 20152592 (2016). This paper outlines the importance of interactions between different stressors.

    Article  Google Scholar 

  85. 85.

    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).

    Article  Google Scholar 

  86. 86.

    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Chang. Biol. 20, 544–554 (2014).

    Article  Google Scholar 

  87. 87.

    Taylor, B. W., Flecker, A. S. & Hall, R. O. Jr. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313, 833–836 (2006).

    PubMed  Article  ADS  CAS  Google Scholar 

  88. 88.

    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).

    PubMed  Article  ADS  Google Scholar 

  89. 89.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    PubMed  Article  ADS  CAS  Google Scholar 

  90. 90.

    Waldram, M. S., Bond, W. J. & Stock, W. D. Ecological engineering by a mega-grazer: white rhino impacts on a south african savanna. Ecosystems 11, 101–112 (2008).

    Article  Google Scholar 

  91. 91.

    Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. 144, 1419–1429 (2011).

    Article  Google Scholar 

  92. 92.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    PubMed  Article  ADS  CAS  Google Scholar 

  93. 93.

    Phillips, O. L. et al. Increasing dominance of large lianas in Amazonian forests. Nature 418, 770–774 (2002).

    PubMed  Article  ADS  CAS  Google Scholar 

  94. 94.

    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).

    PubMed  Article  Google Scholar 

  95. 95.

    Hughes, T. P. Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

    PubMed  Article  ADS  CAS  Google Scholar 

  96. 96.

    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

    PubMed  Article  ADS  CAS  Google Scholar 

  97. 97.

    Hicks, C. C., Crowder, L. B., Graham, N. A. J., Kittinger, J. N. & Le Cornu, E. Social drivers forewarn of marine regime shifts. Front. Ecol. Environ. 14, 252–260 (2016).

    Article  Google Scholar 

  98. 98.

    Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018). This paper outlines the sustainability challenges of current development trajectories.

    Article  Google Scholar 

  100. 100.

    Stern, D. I., Common, M. S. & Barbier, E. B. Economic growth and environmental degradation: the environmental Kuznets curve and sustainable development. World Dev. 24, 1151–1160 (1996).

    Article  Google Scholar 

  101. 101.

    Alamgir, M. et al. Economic, socio-political and environmental risks of road development in the tropics. Curr. Biol. 27, R1130–R1140 (2017).

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Deininger, K. & Byerlee, D. Rising Global Interest in Farmland (The World Bank, Washington, D.C., 2011).

    Book  Google Scholar 

  103. 103.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    PubMed  Article  Google Scholar 

  104. 104.

    Pauly, D. On Malthusian overfishing. Naga, the ICLARM Quarterly 13, 3–4 (1990).

    Google Scholar 

  105. 105.

    Rands, M. R. W. et al. Biodiversity conservation: challenges beyond 2010. Science 329, 1298–1303 (2010). This study shows that effective environmental governance is a necessary condition for improved sustainability outcomes.

    PubMed  Article  ADS  CAS  Google Scholar 

  106. 106.

    Blasiak, R. & Wabnitz, C. C. C. Aligning fisheries aid with international development targets and goals. Mar. Policy 88, 86–92 (2018).

    Article  Google Scholar 

  107. 107.

    Mora, C. et al. Management effectiveness of the world’s marine fisheries. PLoS Biol. 7, e1000131 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Mammides, C. et al. Increasing geographic diversity in the international conservation literature: a stalled process? Biol. Conserv. 198, 78–83 (2016). This paper reveals that authors from low-income countries are less than half as likely to be published as those from high-income countries.

    Article  Google Scholar 

  109. 109.

    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  110. 110.

    Nilsson, M. Important Interactions among the Sustainable Development Goals Under Review at the High-Level Political Forum 2017 (SEI, Stockholm, 2017).

  111. 111.

    Kopnina, H., Washington, H., Gray, J. & Taylor, B. The ‘future of conservation’ debate: defending ecocentrism and the Nature Needs Half movement. Biol. Conserv. 217, 140–148 (2018).

    Article  Google Scholar 

  112. 112.

    UNEP-WCMC & IUCN. Protected Planet: the World Database on Protected Areas (WDPA) https://www.protectedplanet.net/c/world-database-on-protected-areas (2018).

  113. 113.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    PubMed  Article  ADS  CAS  Google Scholar 

  114. 114.

    Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).

    Article  Google Scholar 

  115. 115.

    Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Chang. Biol. 22, 656–665 (2016).

    Article  Google Scholar 

  116. 116.

    Agrawal, A., Nepstad, D. & Chhatre, A. Reducing emissions from deforestation and forest degradation. Annu. Rev. Environ. Resour. 36, 373–396 (2011).

    Article  Google Scholar 

  117. 117.

    Winder, G. M. & Le Heron, R. Assembling a Blue Economy moment? Geographic engagement with globalizing biological–economic relations in multi-use marine environments. Dialogues Hum. Geogr. 7, 3–26 (2017).

    Article  Google Scholar 

  118. 118.

    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Chang. 8, 109–116 (2018). This study highlights the importance of tackling demand for unsustainable products from downstream buyers and investors.

    Article  ADS  Google Scholar 

  119. 119.

    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).

    PubMed  Article  ADS  CAS  Google Scholar 

  120. 120.

    Richards, R. C. et al. Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst. Serv. 16, 23–32 (2015).

    Article  Google Scholar 

  121. 121.

    Kosoy, N. & Corbera, E. Payments for ecosystem services as commodity fetishism. Ecol. Econ. 69, 1228–1236 (2010).

    Article  Google Scholar 

  122. 122.

    Corbera, E. & Schroeder, H. REDD+ crossroads post Paris: Politics, lessons and interplays. Forests 8, 508 (2017).

    Article  Google Scholar 

  123. 123.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832–1258832 (2015).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Cinner, J. E. et al. Comanagement of coral reef social-ecological systems. Proc. Natl Acad. Sci. USA 109, 5219–5222 (2012).

    PubMed  Article  ADS  Google Scholar 

  125. 125.

    Porter-Bolland, L. et al. Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. For. Ecol. Manage. 268, 6–17 (2012).

    Article  Google Scholar 

  126. 126.

    Gudynas, E. Buen Vivir: today’s tomorrow. Development 54, 441–447 (2011).

    Article  Google Scholar 

  127. 127.

    Seymour, F. & Busch, J. Why Forests? Why Now? The Science, Economics, and Politics of Tropical Forests and Climate Change (Center for Global Development, Washington, D.C., 2016).

    Google Scholar 

  128. 128.

    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).

    PubMed  Article  ADS  CAS  Google Scholar 

  129. 129.

    Soulé, M. in Keeping the Wild: Against the Domestication of Earth (eds Wuerthner, G. et al.) 66–80 (Island, Washington, D.C., 2014).

  130. 130.

    Holmes, G., Sandbrook, C. & Fisher, J. A. Understanding conservationists’ perspectives on the new-conservation debate. Conserv. Biol. 31, 353–363 (2017).

    PubMed  Article  Google Scholar 

  131. 131.

    Matulis, B. S. & Moyer, J. R. Beyond inclusive conservation: the value of pluralism, the need for agonism, and the case for social instrumentalism. Conserv. Lett. 10, 279–287 (2017). This paper highlights the importance of pluralism in conservation approaches.

    Article  Google Scholar 

  132. 132.

    Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    PubMed  Article  ADS  CAS  Google Scholar 

  133. 133.

    Larsen, R. K. et al. Hybrid governance in agricultural commodity chains: insights from implementation of ‘No Deforestation, No Peat, No Exploitation’ (NDPE) policies in the oil palm industry. J. Clean. Prod. 183, 544–554 (2018).

    Article  Google Scholar 

  134. 134.

    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    PubMed  Article  ADS  CAS  Google Scholar 

  135. 135.

    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    PubMed  Article  ADS  CAS  Google Scholar 

  136. 136.

    Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

    PubMed  Article  ADS  CAS  Google Scholar 

  137. 137.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article  Google Scholar 

  138. 138.

    DRYFLOR et al. Plant diversity patterns in Neotropical dry forests and their conservation implications. Science 353, 1383–1387 (2016).

    Article  CAS  Google Scholar 

  139. 139.

    Leal, C. G. et al. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J. Appl. Ecol. 55, 1312–1326 (2018).

    Article  Google Scholar 

  140. 140.

    Pitman, N. C. A., Azáldegui, M. d. C. L., Salas, K., Vigo, G. T. & Lutz, D. A. Written accounts of an Amazonian landscape over the last 450 years. Conserv. Biol. 21, 253–262 (2007).

    PubMed  Article  Google Scholar 

  141. 141.

    Feeley, K. Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America. PLoS ONE 10, e0125629 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Sutherland, W. J., Gardner, T. A., Haider, L. J. & Dicks, L. V. How can local and traditional knowledge be effectively incorporated into international assessments? Oryx 48, 1–2 (2014).

    Article  Google Scholar 

  143. 143.

    Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).

    Article  Google Scholar 

  144. 144.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, art26 (2013).

    Article  Google Scholar 

  145. 145.

    Brashares, J. S. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

  146. 146.

    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

    PubMed  Article  ADS  CAS  Google Scholar 

  147. 147.

    Richards, P. D., Myers, R. J., Swinton, S. M. & Walker, R. T. Exchange rates, soybean supply response, and deforestation in South America. Glob. Environ. Change 22, 454–462 (2012).

    Article  Google Scholar 

  148. 148.

    Hicks, C. C. et al. Engage key social concepts for sustainability. Science 352, 38–40 (2016).

    PubMed  Article  ADS  CAS  Google Scholar 

  149. 149.

    Fischer, J. et al. Advancing sustainability through mainstreaming a social–ecological systems perspective. Curr. Opin. Environ. Sustain. 14, 144–149 (2015). This paper examines how the concept of social–ecological systems can improve sustainability.

  150. 150.

    Cvitanovic, C. et al. Improving knowledge exchange among scientists and decision-makers to facilitate the adaptive governance of marine resources: a review of knowledge and research needs. Ocean Coast. Manage. 112, 25–35 (2015).

    Article  Google Scholar 

  151. 151.

    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016). This analysis shows how the ‘bright spots’ approach can identify better-than-expected environmental situations.

  152. 152.

    Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).

    Article  Google Scholar 

  153. 153.

    Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).

    PubMed  Article  ADS  CAS  Google Scholar 

  154. 154.

    Balvanera, P. et al. Key features for more successful place-based sustainability research on social-ecological systems: a Programme on Ecosystem Change and Society (PECS) perspective. Ecol. Soc. 22, 14 (2017).

    Article  Google Scholar 

  155. 155.

    Clarke, D. A., York, P. H., Rasheed, M. A. & Northfield, T. D. Does biodiversity–ecosystem function literature neglect tropical ecosystems? Trends Ecol. Evol. 32, 320–323 (2017).

    PubMed  Article  Google Scholar 

  156. 156.

    Gardner, T. A. et al. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Phil. Trans. R. Soc. B 368, 20120166 (2013).

    PubMed  Article  Google Scholar 

  157. 157.

    Rose, R. A. et al. Ten ways remote sensing can contribute to conservation. Conserv. Biol. 29, 350–359 (2015).

    PubMed  Article  Google Scholar 

  158. 158.

    Thomsen, P. F. & Willerslev, E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article  Google Scholar 

  159. 159.

    Gardner, T. A. et al. Transparency and sustainability in global commodity supply chains. World Dev. (2018)

  160. 160.

    Basset, Y. et al. Conservation and biological monitoring of tropical forests: the role of parataxonomists. J. Appl. Ecol. 41, 163–174 (2004).

    Article  Google Scholar 

  161. 161.

    Barlow, J. et al. Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biol. Rev. Camb. Philos. Soc. 86, 457–474 (2011).

    PubMed  Article  Google Scholar 

  162. 162.

    Barlow, J. et al. On the extinction of the single-authored paper: the causes and consequences of increasingly collaborative applied ecological research. J. Appl. Ecol. 55, 1–4 (2018).

    Article  Google Scholar 

  163. 163.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Kleypas, J. A., McManus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–159 (1999).

    Article  Google Scholar 

  165. 165.

    Birdlife International & Handbook of the Birds of the World. Bird species distribution maps of the world Version 7.0. http://datazone.birdlife.org/species/requestdis (2017).

  166. 166.

    Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

    PubMed  Article  ADS  CAS  Google Scholar 

  168. 168.

    Flores, B. M., Fagoaga, R., Nelson, B. W. & Holmgren, M. Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J. Appl. Ecol. 53, 1597–1603 (2016).

    Article  Google Scholar 

  169. 169.

    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  170. 170.

    Durigan, G. & Ratter, J. A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 53, 11–15 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following for providing data: Birdlife International, International Union for Conservation of Nature, Ocean Biogeographic Information System, C. Veron for zooxanthellate corals, the Large-Scale Biosphere-Atmosphere Program (LBA) and National Environment Research Council grant NE/P004512/1 for forest birds, John Fell Fund for savannah birds, Pew Marine Fellows Program of The Pew Charitable Trusts, and Brazilian Council for Scientific and Technological Development (CNPq) (PELD 441659/2016-0). Individual funding was provided by National Environment Research Council NE/K016431/1; NE/P004512/1; NE/L000016/1; European Research Council 759457; H2020-MSCA-RISE (691053-ODYSSEA); NASA’s Interdisciplinary Research in Earth Sciences program (NNX14AD29G); OIST and JSPS KAKENHI (JP17K15180); CNPq scientific productivity grant (307788/2017-2); CNPq Programa de Capacitação Institucional (300231/2016-4); Royal Society (UF140691) and Swedish Research Council Formas grant (2016-00351).

Reviewer information

Nature thanks N. Knowlton, C. Mora and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

J.B. developed the review with input from N.A.J.G., T.A.G., C.C.H., A.C.L. and J.F. F.F. and G.D.L. analysed the data, supported by J.B., T.A.G., C.C.H., E.B., L.C., E.P.E., B.G., C.G.L., V.I., A.C.L., C.L.P., S.K.W., P.J.Y. and N.A.J.G. J.B., T.A.G., C.C.H., N.A.J.G., L.C., A.C.L., C.L.P., F.F. and G.D.L. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Jos Barlow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

This table lists the original data sources.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barlow, J., França, F., Gardner, T.A. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018). https://doi.org/10.1038/s41586-018-0301-1

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing