The tropics contain the overwhelming majority of Earth’s biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds. However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities. Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    United Nations General Assembly. Transforming our world: the 2030 Agenda for Sustainable Development (United Nations, New York, 2015).

  2. 2.

    Edelman, A. et al. State of the Tropics: 2014 Report (James Cook Univ., Cairns, 2014).

  3. 3.

    Moreau, C. S. & Bell, C. D. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).

  4. 4.

    Jablonski, D. et al. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

  5. 5.

    DeGraaf, R. M. & Rappole, J. H. Neotropical Migratory Birds: Natural History, Distribution, and Population Change (Cornell Univ. Press, Ithaca, 1995).

  6. 6.

    Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos 118, 624–626 (2009).

  7. 7.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

  8. 8.

    Chown, S. L., Gaston, K. J. & Williams, P. H. Global patterns in species richness of pelagic seabirds: the Procellariiformes. Ecography 21, 342–350 (1998).

  9. 9.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011). This study develops a new method to quantify the completeness of taxonomic inventories.

  10. 10.

    Tancoigne, E. & Dubois, A. Taxonomy: no decline, but inertia. Cladistics 29, 567–570 (2013).

  11. 11.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

  12. 12.

    Guénard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012). This paper identifies hotspots of discovery for ant species.

  13. 13.

    Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mamm. 99, 1–14 (2018). This paper shows that the Neotropics and Afrotropics contain the highest number of newly recognized mammal species.

  14. 14.

    Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).

  15. 15.

    Agnarsson, I., Coddington, J. A. & Kuntner, M. in Spider Research in the 21st Century: Trends and Perspectives (ed. Penney, D.) 58–111 (Siri Scientific, Rochdale, 2013).

  16. 16.

    Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: addressing disparity in global monitoring. Trop. Conserv. Sci. 1, 75–88 (2008).

  17. 17.

    Fisher, R. et al. Global mismatch between research effort and conservation needs of tropical coral reefs. Conserv. Lett. 4, 64–72 (2011).

  18. 18.

    Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).

  19. 19.

    Barlow, J., Overal, W. L., Araujo, I. S., Gardner, T. A. & Peres, C. A. The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. J. Appl. Ecol. 44, 1001–1012 (2007).

  20. 20.

    Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. 8, 4920 (2018).

  21. 21.

    Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evol. Ecol. Res. 4, 371–383 (2002).

  22. 22.

    Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 20th edn (SIL International, Dallas, 2018).

  23. 23.

    Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

  24. 24.

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (WRI, Washington, D.C., 2011).

  25. 25.

    Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).

  26. 26.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

  27. 27.

    Grace, J., San José, J., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).

  28. 28.

    van der Ent, R. J., Savenije, H. H. G. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Wat. Resour. Res. 46, W09525 (2010). This study shows the importance of tropical forests for precipitation in extra-tropical regions.

  29. 29.

    IUCN. IUCN Spatial Data. http://www.iucnredlist.org/technical-documents/spatial-data (2018).

  30. 30.

    Régnier, C. et al. Mass extinction in poorly known taxa. Proc. Natl Acad. Sci. USA 112, 7761–7766 (2015).

  31. 31.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 401, 401–406 (2014).

  32. 32.

    Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage. 352, 9–20 (2015).

  33. 33.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2, 81–98 (2015).

  34. 34.

    Pelicice, F. M., Pompeu, P. S. & Agostinho, A. A. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 16, 697–715 (2015).

  35. 35.

    Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. Proc. Natl Acad. Sci. USA 113, 14544–14551 (2016).

  36. 36.

    Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

  37. 37.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

  38. 38.

    Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).

  39. 39.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

  40. 40.

    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).

  41. 41.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

  42. 42.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).

  43. 43.

    Lewis, S. E., Silburn, D. M., Kookana, R. S. & Shaw, M. Pesticide behavior, fate, and effects in the tropics: an overview of the current state of knowledge. J. Agric. Food Chem. 64, 3917–3924 (2016).

  44. 44.

    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).

  45. 45.

    Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

  46. 46.

    Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by scleractinian corals. Mar. Biol. 162, 725–732 (2015).

  47. 47.

    Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science 359, 460–462 (2018).

  48. 48.

    Garcia, L. C., Ribeiro, D. B., de Oliveira Roque, F., Ochoa-Quintero, J. M. & Laurance, W. F. Brazil’s worst mining disaster: corporations must be compelled to pay the actual environmental costs. Ecol. Appl. 27, 5–9 (2017).

  49. 49.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

  50. 50.

    Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229 (2013).

  51. 51.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

  52. 52.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

  53. 53.

    Ingram, D. J. et al. Assessing Africa-wide pangolin exploitation by scaling local data. Conserv. Lett. 11, e12389 (2017).

  54. 54.

    Eaton, J. A. et al. Trade-driven extinctions and near-extinctions of avian taxa in Sundaic Indonesia. Forktail 31, 1–12 (2015).

  55. 55.

    Barrett, M. A., Brown, J. L., Morikawa, M. K., Labat, J.-N. & Yoder, A. D. CITES designation for endangered rosewood in Madagascar. Science 328, 1109–1110 (2010).

  56. 56.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

  57. 57.

    Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).

  58. 58.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

  59. 59.

    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

  60. 60.

    Pyšek, P. et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23, 237–244 (2008).

  61. 61.

    Nghiem, T. P. et al. Economic and environmental impacts of harmful non-indigenous species in southeast Asia. PLoS ONE 8, e71255 (2013).

  62. 62.

    Setterfield, S. A., Rossiter-Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).

  63. 63.

    Albins, M. A. & Hixon, M. A. Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ. Biol. Fishes 96, 1151–1157 (2013).

  64. 64.

    Hecky, R. E., Mugidde, R., Ramlal, P. S., Talbot, M. R. & Kling, G. W. Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshw. Biol. 55, 19–42 (2010).

  65. 65.

    Drake, J. M. & Lodge, D. M. Global hot spots of biological invasions: evaluating options for ballast-water management. Proc. R. Soc. Lond. B 271, 575–580 (2004).

  66. 66.

    Albright, R. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 531, 362–365 (2016).

  67. 67.

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).

  68. 68.

    Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014). This analysis highlights the importance of grassy tropical ecosystems.

  69. 69.

    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).

  70. 70.

    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. (2018).

  71. 71.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

  72. 72.

    Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 034009 (2011).

  73. 73.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  74. 74.

    Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011).

  75. 75.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

  76. 76.

    Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).

  77. 77.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Chang. 3, 239–243 (2013).

  78. 78.

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

  79. 79.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  80. 80.

    Jensen, M. P. et al. Environmental warming and feminization of one of the largest sea turtle populations in the world. Curr. Biol. 28, 154–159 (2018).

  81. 81.

    Woodroffe, R., Groom, R. & McNutt, J. W. Hot dogs: high ambient temperatures impact reproductive success in a tropical carnivore. J. Anim. Ecol. 86, 1329–1338 (2017).

  82. 82.

    Castello, L. & Macedo, M. N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 22, 990–1007 (2016).

  83. 83.

    Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Chang. 7, 133–136 (2017).

  84. 84.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B 283, 20152592 (2016). This paper outlines the importance of interactions between different stressors.

  85. 85.

    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).

  86. 86.

    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Chang. Biol. 20, 544–554 (2014).

  87. 87.

    Taylor, B. W., Flecker, A. S. & Hall, R. O. Jr. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313, 833–836 (2006).

  88. 88.

    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).

  89. 89.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

  90. 90.

    Waldram, M. S., Bond, W. J. & Stock, W. D. Ecological engineering by a mega-grazer: white rhino impacts on a south african savanna. Ecosystems 11, 101–112 (2008).

  91. 91.

    Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. 144, 1419–1429 (2011).

  92. 92.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

  93. 93.

    Phillips, O. L. et al. Increasing dominance of large lianas in Amazonian forests. Nature 418, 770–774 (2002).

  94. 94.

    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).

  95. 95.

    Hughes, T. P. Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

  96. 96.

    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

  97. 97.

    Hicks, C. C., Crowder, L. B., Graham, N. A. J., Kittinger, J. N. & Le Cornu, E. Social drivers forewarn of marine regime shifts. Front. Ecol. Environ. 14, 252–260 (2016).

  98. 98.

    Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).

  99. 99.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018). This paper outlines the sustainability challenges of current development trajectories.

  100. 100.

    Stern, D. I., Common, M. S. & Barbier, E. B. Economic growth and environmental degradation: the environmental Kuznets curve and sustainable development. World Dev. 24, 1151–1160 (1996).

  101. 101.

    Alamgir, M. et al. Economic, socio-political and environmental risks of road development in the tropics. Curr. Biol. 27, R1130–R1140 (2017).

  102. 102.

    Deininger, K. & Byerlee, D. Rising Global Interest in Farmland (The World Bank, Washington, D.C., 2011).

  103. 103.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

  104. 104.

    Pauly, D. On Malthusian overfishing. Naga, the ICLARM Quarterly 13, 3–4 (1990).

  105. 105.

    Rands, M. R. W. et al. Biodiversity conservation: challenges beyond 2010. Science 329, 1298–1303 (2010). This study shows that effective environmental governance is a necessary condition for improved sustainability outcomes.

  106. 106.

    Blasiak, R. & Wabnitz, C. C. C. Aligning fisheries aid with international development targets and goals. Mar. Policy 88, 86–92 (2018).

  107. 107.

    Mora, C. et al. Management effectiveness of the world’s marine fisheries. PLoS Biol. 7, e1000131 (2009).

  108. 108.

    Mammides, C. et al. Increasing geographic diversity in the international conservation literature: a stalled process? Biol. Conserv. 198, 78–83 (2016). This paper reveals that authors from low-income countries are less than half as likely to be published as those from high-income countries.

  109. 109.

    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

  110. 110.

    Nilsson, M. Important Interactions among the Sustainable Development Goals Under Review at the High-Level Political Forum 2017 (SEI, Stockholm, 2017).

  111. 111.

    Kopnina, H., Washington, H., Gray, J. & Taylor, B. The ‘future of conservation’ debate: defending ecocentrism and the Nature Needs Half movement. Biol. Conserv. 217, 140–148 (2018).

  112. 112.

    UNEP-WCMC & IUCN. Protected Planet: the World Database on Protected Areas (WDPA) https://www.protectedplanet.net/c/world-database-on-protected-areas (2018).

  113. 113.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

  114. 114.

    Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).

  115. 115.

    Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Chang. Biol. 22, 656–665 (2016).

  116. 116.

    Agrawal, A., Nepstad, D. & Chhatre, A. Reducing emissions from deforestation and forest degradation. Annu. Rev. Environ. Resour. 36, 373–396 (2011).

  117. 117.

    Winder, G. M. & Le Heron, R. Assembling a Blue Economy moment? Geographic engagement with globalizing biological–economic relations in multi-use marine environments. Dialogues Hum. Geogr. 7, 3–26 (2017).

  118. 118.

    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Chang. 8, 109–116 (2018). This study highlights the importance of tackling demand for unsustainable products from downstream buyers and investors.

  119. 119.

    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).

  120. 120.

    Richards, R. C. et al. Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst. Serv. 16, 23–32 (2015).

  121. 121.

    Kosoy, N. & Corbera, E. Payments for ecosystem services as commodity fetishism. Ecol. Econ. 69, 1228–1236 (2010).

  122. 122.

    Corbera, E. & Schroeder, H. REDD+ crossroads post Paris: Politics, lessons and interplays. Forests 8, 508 (2017).

  123. 123.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832–1258832 (2015).

  124. 124.

    Cinner, J. E. et al. Comanagement of coral reef social-ecological systems. Proc. Natl Acad. Sci. USA 109, 5219–5222 (2012).

  125. 125.

    Porter-Bolland, L. et al. Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. For. Ecol. Manage. 268, 6–17 (2012).

  126. 126.

    Gudynas, E. Buen Vivir: today’s tomorrow. Development 54, 441–447 (2011).

  127. 127.

    Seymour, F. & Busch, J. Why Forests? Why Now? The Science, Economics, and Politics of Tropical Forests and Climate Change (Center for Global Development, Washington, D.C., 2016).

  128. 128.

    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).

  129. 129.

    Soulé, M. in Keeping the Wild: Against the Domestication of Earth (eds Wuerthner, G. et al.) 66–80 (Island, Washington, D.C., 2014).

  130. 130.

    Holmes, G., Sandbrook, C. & Fisher, J. A. Understanding conservationists’ perspectives on the new-conservation debate. Conserv. Biol. 31, 353–363 (2017).

  131. 131.

    Matulis, B. S. & Moyer, J. R. Beyond inclusive conservation: the value of pluralism, the need for agonism, and the case for social instrumentalism. Conserv. Lett. 10, 279–287 (2017). This paper highlights the importance of pluralism in conservation approaches.

  132. 132.

    Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

  133. 133.

    Larsen, R. K. et al. Hybrid governance in agricultural commodity chains: insights from implementation of ‘No Deforestation, No Peat, No Exploitation’ (NDPE) policies in the oil palm industry. J. Clean. Prod. 183, 544–554 (2018).

  134. 134.

    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

  135. 135.

    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

  136. 136.

    Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

  137. 137.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

  138. 138.

    DRYFLOR et al. Plant diversity patterns in Neotropical dry forests and their conservation implications. Science 353, 1383–1387 (2016).

  139. 139.

    Leal, C. G. et al. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J. Appl. Ecol. 55, 1312–1326 (2018).

  140. 140.

    Pitman, N. C. A., Azáldegui, M. d. C. L., Salas, K., Vigo, G. T. & Lutz, D. A. Written accounts of an Amazonian landscape over the last 450 years. Conserv. Biol. 21, 253–262 (2007).

  141. 141.

    Feeley, K. Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America. PLoS ONE 10, e0125629 (2015).

  142. 142.

    Sutherland, W. J., Gardner, T. A., Haider, L. J. & Dicks, L. V. How can local and traditional knowledge be effectively incorporated into international assessments? Oryx 48, 1–2 (2014).

  143. 143.

    Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).

  144. 144.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, art26 (2013).

  145. 145.

    Brashares, J. S. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

  146. 146.

    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

  147. 147.

    Richards, P. D., Myers, R. J., Swinton, S. M. & Walker, R. T. Exchange rates, soybean supply response, and deforestation in South America. Glob. Environ. Change 22, 454–462 (2012).

  148. 148.

    Hicks, C. C. et al. Engage key social concepts for sustainability. Science 352, 38–40 (2016).

  149. 149.

    Fischer, J. et al. Advancing sustainability through mainstreaming a social–ecological systems perspective. Curr. Opin. Environ. Sustain. 14, 144–149 (2015). This paper examines how the concept of social–ecological systems can improve sustainability.

  150. 150.

    Cvitanovic, C. et al. Improving knowledge exchange among scientists and decision-makers to facilitate the adaptive governance of marine resources: a review of knowledge and research needs. Ocean Coast. Manage. 112, 25–35 (2015).

  151. 151.

    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016). This analysis shows how the ‘bright spots’ approach can identify better-than-expected environmental situations.

  152. 152.

    Bennett, E. M. et al. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14, 441–448 (2016).

  153. 153.

    Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).

  154. 154.

    Balvanera, P. et al. Key features for more successful place-based sustainability research on social-ecological systems: a Programme on Ecosystem Change and Society (PECS) perspective. Ecol. Soc. 22, 14 (2017).

  155. 155.

    Clarke, D. A., York, P. H., Rasheed, M. A. & Northfield, T. D. Does biodiversity–ecosystem function literature neglect tropical ecosystems? Trends Ecol. Evol. 32, 320–323 (2017).

  156. 156.

    Gardner, T. A. et al. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Phil. Trans. R. Soc. B 368, 20120166 (2013).

  157. 157.

    Rose, R. A. et al. Ten ways remote sensing can contribute to conservation. Conserv. Biol. 29, 350–359 (2015).

  158. 158.

    Thomsen, P. F. & Willerslev, E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

  159. 159.

    Gardner, T. A. et al. Transparency and sustainability in global commodity supply chains. World Dev. (2018)

  160. 160.

    Basset, Y. et al. Conservation and biological monitoring of tropical forests: the role of parataxonomists. J. Appl. Ecol. 41, 163–174 (2004).

  161. 161.

    Barlow, J. et al. Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biol. Rev. Camb. Philos. Soc. 86, 457–474 (2011).

  162. 162.

    Barlow, J. et al. On the extinction of the single-authored paper: the causes and consequences of increasingly collaborative applied ecological research. J. Appl. Ecol. 55, 1–4 (2018).

  163. 163.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

  164. 164.

    Kleypas, J. A., McManus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–159 (1999).

  165. 165.

    Birdlife International & Handbook of the Birds of the World. Bird species distribution maps of the world Version 7.0. http://datazone.birdlife.org/species/requestdis (2017).

  166. 166.

    Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).

  167. 167.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

  168. 168.

    Flores, B. M., Fagoaga, R., Nelson, B. W. & Holmgren, M. Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J. Appl. Ecol. 53, 1597–1603 (2016).

  169. 169.

    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

  170. 170.

    Durigan, G. & Ratter, J. A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 53, 11–15 (2016).

Download references


We thank the following for providing data: Birdlife International, International Union for Conservation of Nature, Ocean Biogeographic Information System, C. Veron for zooxanthellate corals, the Large-Scale Biosphere-Atmosphere Program (LBA) and National Environment Research Council grant NE/P004512/1 for forest birds, John Fell Fund for savannah birds, Pew Marine Fellows Program of The Pew Charitable Trusts, and Brazilian Council for Scientific and Technological Development (CNPq) (PELD 441659/2016-0). Individual funding was provided by National Environment Research Council NE/K016431/1; NE/P004512/1; NE/L000016/1; European Research Council 759457; H2020-MSCA-RISE (691053-ODYSSEA); NASA’s Interdisciplinary Research in Earth Sciences program (NNX14AD29G); OIST and JSPS KAKENHI (JP17K15180); CNPq scientific productivity grant (307788/2017-2); CNPq Programa de Capacitação Institucional (300231/2016-4); Royal Society (UF140691) and Swedish Research Council Formas grant (2016-00351).

Reviewer information

Nature thanks N. Knowlton, C. Mora and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. Lancaster Environment Centre, Lancaster University, Lancaster, UK

    • Jos Barlow
    • , Filipe França
    • , Christina C. Hicks
    • , Gareth D. Lennox
    • , Erika Berenguer
    • , Paul J. Young
    •  & Nicholas A. J. Graham
  2. Embrapa Amazônia Oriental, Belém, Brazil

    • Filipe França
    •  & Joice Ferreira
  3. Stockholm Environment Institute, Stockholm, Sweden

    • Toby A. Gardner
  4. Environmental Change Institute, University of Oxford, Oxford, UK

    • Erika Berenguer
  5. Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA

    • Leandro Castello
  6. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan

    • Evan P. Economo
  7. School of Biological Sciences, The University of Hong Kong, Hong Kong, China

    • Benoit Guénard
  8. Museu Paraense Emílio Goeldi, Belém, Brazil

    • Cecília Gontijo Leal
  9. Universidade Federal do Pará, Belém, Brazil

    • Victoria Isaac
  10. School of Science and the Environment, Manchester Metropolitan University, Manchester, UK

    • Alexander C. Lees
  11. School of Environmental Sciences, University of Liverpool, Liverpool, UK

    • Catherine L. Parr
  12. University of Pretoria, Pretoria, South Africa

    • Catherine L. Parr
  13. University of Witwatersrand, Johannesburg, South Africa

    • Catherine L. Parr
  14. Marine Science Program, Department of Biodiversity, Conservation and Attractions, Kensington, Western, Australia

    • Shaun K. Wilson
  15. Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia

    • Shaun K. Wilson


  1. Search for Jos Barlow in:

  2. Search for Filipe França in:

  3. Search for Toby A. Gardner in:

  4. Search for Christina C. Hicks in:

  5. Search for Gareth D. Lennox in:

  6. Search for Erika Berenguer in:

  7. Search for Leandro Castello in:

  8. Search for Evan P. Economo in:

  9. Search for Joice Ferreira in:

  10. Search for Benoit Guénard in:

  11. Search for Cecília Gontijo Leal in:

  12. Search for Victoria Isaac in:

  13. Search for Alexander C. Lees in:

  14. Search for Catherine L. Parr in:

  15. Search for Shaun K. Wilson in:

  16. Search for Paul J. Young in:

  17. Search for Nicholas A. J. Graham in:


J.B. developed the review with input from N.A.J.G., T.A.G., C.C.H., A.C.L. and J.F. F.F. and G.D.L. analysed the data, supported by J.B., T.A.G., C.C.H., E.B., L.C., E.P.E., B.G., C.G.L., V.I., A.C.L., C.L.P., S.K.W., P.J.Y. and N.A.J.G. J.B., T.A.G., C.C.H., N.A.J.G., L.C., A.C.L., C.L.P., F.F. and G.D.L. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jos Barlow.

Supplementary information

  1. Supplementary Table 1

    This table lists the original data sources.

About this article

Publication history







By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.