China’s response to a national land-system sustainability emergency

Abstract

China has responded to a national land-system sustainability emergency via an integrated portfolio of large-scale programmes. Here we review 16 sustainability programmes, which invested US$378.5 billion (in 2015 US$), covered 623.9 million hectares of land and involved over 500 million people, mostly since 1998. We find overwhelmingly that the interventions improved the sustainability of China’s rural land systems, but the impacts are nuanced and adverse outcomes have occurred. We identify some key characteristics of programme success, potential risks to their durability, and future research needs. We suggest directions for China and other nations as they progress towards the Sustainable Development Goals of the United Nations’ Agenda 2030.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of events.
Fig. 2: Investment and area of interventions.
Fig. 3: Governance, administration and implementation of China’s sustainability programmes.
Fig. 4: Mapping investment against the SDGs.

References

  1. 1.

    Marks, R. B. China: An Environmental History (ed. Lanham, M. A.) 2nd edn (Rowman and Littlefield, Lanham, 2017). Key, authoritative, and recently updated account of China’s environmental history.

  2. 2.

    Xu, J., Yin, R., Li, Z. & Liu, C. China’s ecological rehabilitation: unprecedented efforts, dramatic impacts, and requisite policies. Ecol. Econ. 57, 595–607 (2006). Early overview and background of the Grain for Green Program and the Natural Forest Conservation Program and assessment of their challenges.

    Article  Google Scholar 

  3. 3.

    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development Annex A/RES/70/1. https://sustainabledevelopment.un.org/post2015/transformingourworld (UN, 2015).

  4. 4.

    Gao, L. & Bryan, B. A. Finding pathways to national-scale land-sector sustainability. Nature 544, 217–222 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  5. 5.

    Delang, C. O. & Yuan, Z. China's Grain for Green Program: A Review of the Largest Ecological Restoration and Rural Development Program in the World (Springer International Publishing, Switzerland, 2015). Deep review of the Grain for Green Program which thoroughly covers multiple environmental, policy, and socio-economic details.

    Google Scholar 

  6. 6.

    Yin, R. An Integrated Assessment of China's Ecological Restoration Programs (Springer, East Lansing, 2009). Collection of articles describing several of China’s sustainability programmes.

    Google Scholar 

  7. 7.

    Liu, J., Ouyang, Z., Yang, W., Xu, W. & Li, S. in Encyclopedia of Biodiversity Vol. 3, 372–384 (Academic Press, Waltham, 2013).

    Google Scholar 

  8. 8.

    Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008). High-profile critical assessment that raised awareness of the scale of China’s investment in sustainability.

    ADS  PubMed  Article  Google Scholar 

  9. 9.

    Ouyang, Z. Y. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016). National-scale quantitative assessment of the changes in ecosystem services across China, relating these to sustainability investment.

    ADS  PubMed  Article  CAS  Google Scholar 

  10. 10.

    Yin, R. S., Yin, G. P. & Li, L. Y. Assessing China’s ecological restoration programs: what’s been done and what remains to be done? Environ. Manage. 45, 442–453 (2010).

    ADS  PubMed  Article  Google Scholar 

  11. 11.

    Yin, R. S. & Yin, G. P. China’s primary programs of terrestrial ecosystem restoration: initiation, implementation, and challenges. Environ. Manage. 45, 429–441 (2010).

    ADS  PubMed  Article  Google Scholar 

  12. 12.

    Liu, J. G. & Diamond, J. China’s environment in a globalizing world. Nature 435, 1179–1186 (2005).

    ADS  PubMed  Article  CAS  Google Scholar 

  13. 13.

    Liu, J. & Raven, P. H. China’s environmental challenges and implications for the world. Crit. Rev. Environ. Sci. Technol. 40, 823–851 (2010).

    Article  CAS  Google Scholar 

  14. 14.

    Kahn, M. E. & Zheng, S. Blue Skies over Beijing: Economic Growth and the Environment in China (Princeton Univ. Press, Princeton, 2016).

    Google Scholar 

  15. 15.

    Shapiro, J. China's Environmental Challenges (Wiley, Polity Press, Cambridge, 2016).

    Google Scholar 

  16. 16.

    Banister, J. in The Population of Modern China (eds Poston, D. L. & D. Yaukey, D.) 51–57 (Springer, Boston, 1992).

  17. 17.

    He, F., Ge, Q., Dai, J. & Rao, Y. Forest change of China in recent 300 years. J. Geogr. Sci. 18, 59–72 (2008).

    Article  Google Scholar 

  18. 18.

    Elvin, M. The Retreat of the Elephants: An Environmental History of China (Yale Univ. Press, New Haven, 2004).

    Google Scholar 

  19. 19.

    Mao, Y., Zhao, N. & Yang, X. in Food Security and Farm Land Protection in China Vol. 2 (eds Yang, M. & Fan, G.) 356 (Series on Chinese Economics Research, World Scientific Publishing, Singapore, 2013).

  20. 20.

    Miao, L. et al. Synthesis of China’s land use in the past 300 years. Global Planet. Change 100, 224–233 (2013). Comprehensive synthesis of land-use and population dynamics in China, combining multiple datasets.

    ADS  Article  Google Scholar 

  21. 21.

    Miao, L., Zhu, F., Sun, Z., Moore, J. & Cui, X. China’s land-use changes during the past 300 years: a historical perspective. Int. J. Environ. Res. Public Health 13, 847 (2016).

    PubMed Central  Article  Google Scholar 

  22. 22.

    Hua, L. M. & Squires, V. R. Managing China’s pastoral lands: current problems and future prospects. Land Use Policy 43, 129–137 (2015).

    Article  Google Scholar 

  23. 23.

    Liu, J. & Yang, W. Water sustainability for China and beyond. Science 337, 649–650 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  24. 24.

    Yu, D. P. et al. Forest management in northeast China: history, problems, and challenges. Environ. Manage. 48, 1122–1135 (2011).

    ADS  PubMed  Article  Google Scholar 

  25. 25.

    Ren, G. et al. Effectiveness of China’s National Forest Protection Program and nature reserves. Conserv. Biol. 29, 1368–1377 (2015).

    PubMed  Article  Google Scholar 

  26. 26.

    Xu, J. China’s new forests aren’t as green as they seem. Nature 477, 371 (2011). Opinion piece challenging the environmental credentials of China’s large-scale reforestation and afforestation programmes.

    ADS  PubMed  Article  CAS  Google Scholar 

  27. 27.

    Ran, L. S., Lu, X. X. & Xu, J. C. Effects of vegetation restoration on soil conservation and sediment loads in China: a critical review. Crit. Rev. Environ. Sci. Technol. 43, 1384–1415 (2013).

    Article  Google Scholar 

  28. 28.

    Lei, J. & Zhu, L. China’s Implementation of Six Key Forestry Programs. http://www.china.org.cn/e-news/news02-05-14.htm (China Tibet Information Center/State Forestry Administration, 2002).

  29. 29.

    Douglas, I. Land degradation, soil conservation and the sediment load of the Yellow River, China: review and assessment. Land Degrad. Rehabil. 1, 141–151 (1989).

    Article  Google Scholar 

  30. 30.

    Li, X. Y. et al. Patterns of cereal yield growth across China from 1980 to 2010 and their implications for food production and food security. PLoS One 11, e0159061 (2016).

    CAS  Google Scholar 

  31. 31.

    PRC Ministry of Agriculture. Notification on National Farmland Quality Grading (Beijing, China, 2014) [in Chinese].

  32. 32.

    Chen, Y. & Tang, H. Desertification in north China: background, anthropogenic impacts and failures in combating it. Land Degrad. Dev. 16, 367–376 (2005).

    Article  Google Scholar 

  33. 33.

    Wang, F., Pan, X., Wang, D., Shen, C. & Lu, Q. Combating desertification in China: Past, present and future. Land Use Policy 31, 311–313 (2013).

    Article  Google Scholar 

  34. 34.

    Feng, Q., Ma, H., Jiang, X. M., Wang, X. & Cao, S. X. What has caused desertification in China? Sci. Rep. 5, 15998 (2015).

    Google Scholar 

  35. 35.

    Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).

    ADS  Article  Google Scholar 

  36. 36.

    Xie, X. H. et al. Detection and attribution of changes in hydrological cycle over the Three-North region of China: climate change versus afforestation effect. Agric. For. Meteorol. 203, 74–87 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Cao, S. X., Zhong, B. L., Yue, H., Zeng, H. S. & Zeng, J. H. Development and testing of a sustainable environmental restoration policy on eradicating the poverty trap in China’s Changting County. Proc. Natl Acad. Sci. USA 106, 10712–10716 (2009). Identifies the importance of a systemic approach and the joint solution of poverty and environmental degradation.

    ADS  PubMed  Article  Google Scholar 

  38. 38.

    Cheng, L. et al. Estimation of the costs of desertification in China: a critical review. Land Degrad. Dev. 29, 975–983 (2016).

    Article  Google Scholar 

  39. 39.

    Shiau, J.-T., Feng, S. & Nadarajah, S. Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol. Processes 21, 2157–2163 (2007).

    ADS  Article  Google Scholar 

  40. 40.

    Ye, Q. & Glantz, M. H. The 1998 Yangtze Floods: the use of short-term forecasts in the context of seasonal to interannual water resource management. Mitigation Adapt. Strategies Glob. Change 10, 159–182 (2005).

    Article  Google Scholar 

  41. 41.

    Wang, X., Dong, Z., Zhang, J. & Liu, L. Modern dust storms in China: an overview. J. Arid Environ. 58, 559–574 (2004).

    ADS  Article  Google Scholar 

  42. 42.

    Ai, N. & Polenski, K. R. Socioeconomic impact analysis of yellow-dust storms: an approach and case study for Beijing. Econ. Syst. Res. 20, 187–203 (2008).

    Article  Google Scholar 

  43. 43.

    Farm Service Agency. Conservation Reserve Program Statistics. https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-program-statistics/index (United States Department of Agriculture, FSA, 2017).

  44. 44.

    Yang, W. et al. Performance and prospects of payments for ecosystem services programs: evidence from China. J. Environ. Manage. 127, 86–95 (2013).

    PubMed  Article  Google Scholar 

  45. 45.

    Dong, C., Liu, X. M. & Klein, K. K. Land degradation and population relocation in northern China. Asia Pacif. Viewp. 53, 163–177 (2012).

    Article  Google Scholar 

  46. 46.

    Wang, P. et al. Promise and reality of market-based environmental policy in China: empirical analyses of the ecological restoration program on the Qinghai-Tibetan Plateau. Glob. Environ. Change 39, 35–44 (2016).

    Article  Google Scholar 

  47. 47.

    Lei, Y. R., Finlayson, C. M., Thwaites, R., Shi, G. Q. & Cui, L. J. Using government resettlement projects as a sustainable adaptation strategy for climate change. Sustainability 9, 1373 (2017).

    Article  Google Scholar 

  48. 48.

    Ghestem, M. et al. A framework for identifying plant species to be used as ‘ecological engineers’ for fixing soil on unstable slopes. PLoS One 9, e95876 (2014).

    Article  CAS  Google Scholar 

  49. 49.

    Li, X. R., Xiao, H. L., He, M. Z. & Zhang, J. G. Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions. Ecol. Eng. 28, 149–157 (2006).

    Article  Google Scholar 

  50. 50.

    Yang, Z.-Q., Wang, X.-Y. & Zhang, Y.-N. Recent advances in biological control of important native and invasive forest pests in China. Biol. Control 68, 117–128 (2014).

    Article  Google Scholar 

  51. 51.

    Li, M.-M. et al. An overview of the “Three-North” Shelterbelt project in China. For. Stud. China 14, 70–79 (2012).

    ADS  Article  Google Scholar 

  52. 52.

    Liao, C., Han, F. & Feng, M. Construction achievement and experience of soil and water conservation. Yangtze River 41, 16–20 (2010) [in Chinese].

    Google Scholar 

  53. 53.

    PRC Information Office of the State Council. New Progress in Development-oriented Poverty Reduction Program for Rural China. http://www.gov.cn/english/official/2011-11/16/content_1994729.htm (PRCIOSC, Beijing, 2011).

  54. 54.

    Li, P. & Wang, X. in Ecological Migration, Development and Transformation: A Study of Migration and Poverty Reduction in Ningxia (eds Li, P. & Wang, X.) 1–19 (Springer, Berlin, 2016).

  55. 55.

    Wang, J. G. Review of the Comprehensive Agricultural Development Program after two decades of development. China State Finance 18, 32–34 (2008) [in Chinese].

    CAS  Google Scholar 

  56. 56.

    The World Bank. Forest area (% of land area): China. https://data.worldbank.org/indicator/AG.LND.FRST.ZS?locations=CN (The World Bank, 2017).

  57. 57.

    Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).

    ADS  Article  CAS  Google Scholar 

  58. 58.

    Yang, H. F., Mu, S. J. & Li, J. L. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 115, 85–95 (2014).

    Article  Google Scholar 

  59. 59.

    Lu, Y. H. et al. Recent ecological transitions in China: greening, browning, and influential factors. Sci. Rep. 5, 8732 (2015). Quantifies the complex spatial distribution of greening/browning across China from 2000–2010 and the influence of sustainability interventions.

    Google Scholar 

  60. 60.

    Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).

    Article  Google Scholar 

  61. 61.

    Huang, L. et al. Effects of grassland restoration programs on ecosystems in arid and semiarid China. J. Environ. Manage. 117, 268–275 (2013).

    PubMed  Article  Google Scholar 

  62. 62.

    Xiong, D. P., Shi, P. L., Zhang, X. Z. & Zou, C. B. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China: a meta-analysis. Ecol. Eng. 94, 647–655 (2016).

    Article  Google Scholar 

  63. 63.

    Mu, S. J. et al. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China. Global Planet. Change 108, 29–41 (2013).

    ADS  Article  Google Scholar 

  64. 64.

    Cai, H. Y., Yang, X. H. & Xu, X. L. Human-induced grassland degradation/restoration in the central Tibetan Plateau: the effects of ecological protection and restoration projects. Ecol. Eng. 83, 112–119 (2015).

    Article  Google Scholar 

  65. 65.

    Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).

    ADS  Article  Google Scholar 

  66. 66.

    Wang, X. M., Zhang, C. X., Hasi, E. & Dong, Z. B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 74, 13–22 (2010). Critical review finding little unassailable evidence supporting the impact of afforestation programmes on desertification and dust storm mitigation in China and calls for stronger causal analyses.

    ADS  Article  Google Scholar 

  67. 67.

    Peng, D. L. et al. The influences of drought and land-cover conversion on inter-annual variation of NPP in the Three-North Shelterbelt Program zone of China based on MODIS data. PLoS One 11, e0158173 (2016).

    Google Scholar 

  68. 68.

    Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 61, 404–412 (2016).

    Article  Google Scholar 

  69. 69.

    Li, X. S., Wang, H. Y., Wang, J. Y. & Gao, Z. H. Land degradation dynamic in the first decade of twenty-first century in the Beijing-Tianjin dust and sandstorm source region. Environ. Earth Sci. 74, 4317–4325 (2015).

    Article  Google Scholar 

  70. 70.

    Deng, L., Shangguan, Z.-P. & Li, R. Effects of the Grain-for-Green program on soil erosion in China. Int. J. Sediment Res. 27, 120–127 (2012).

    Article  Google Scholar 

  71. 71.

    Li, C. B. et al. Quantifying the effect of ecological restoration on soil erosion in China’s Loess Plateau region: an application of the MMF approach. Environ. Manage. 45, 476–487 (2010).

    ADS  PubMed  Article  Google Scholar 

  72. 72.

    Zhang, J., Wang, T. & Ge, J. Assessing vegetation cover dynamics induced by policy-driven ecological restoration and implication to soil erosion in southern China. PLoS One 10, e0131352 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Liu, Y. S., Guo, Y. J., Li, Y. R. & Li, Y. H. GIS-based effect assessment of soil erosion before and after gully land consolidation: a case study of Wangjiagou project region, Loess Plateau. Chin. Geogr. Sci. 25, 137–146 (2015).

    Article  CAS  Google Scholar 

  74. 74.

    Wang, S. A. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).

    ADS  Article  CAS  Google Scholar 

  75. 75.

    Yang, S. L., Xu, K. H., Milliman, J. D., Yang, H. F. & Wu, C. S. Decline of Yangtze River water and sediment discharge: impact from natural and anthropogenic changes. Sci. Rep. 5, 12581 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    An, W. M. et al. Exploring the effects of the “Grain for Green” program on the differences in soil water in the semi-arid Loess Plateau of China. Ecol. Eng. 107, 144–151 (2017).

    Article  Google Scholar 

  77. 77.

    Cao, S. X. et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth Sci. Rev. 104, 240–245 (2011).

    ADS  Article  Google Scholar 

  78. 78.

    Lu, C., Zhao, T., Shi, X. & Cao, S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod. 176, 1213–1222 (2018).

    Article  Google Scholar 

  79. 79.

    Cao, S. Impact of China’s large-scale ecological restoration program on the environment and society in arid and semiarid areas of China: achievements, problems, synthesis, and applications. Crit. Rev. Environ. Sci. Technol. 41, 317–335 (2011).

    Article  CAS  Google Scholar 

  80. 80.

    Cao, S. X., Zhang, J. Z., Chen, L. & Zhao, T. Y. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manage. 183, 843–849 (2016).

    PubMed  Article  Google Scholar 

  81. 81.

    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016). Quantification of the impacts of reforestation and afforestation and the critical state of water resources in the Loess Plateau region.

    ADS  Article  Google Scholar 

  82. 82.

    Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017). Recent assessment of the representativeness of China’s nature reserve system and opportunities for improvement identifying the importance of payment schemes in shifting rural labour off-farm and reducing direct reliance on natural resources for livelihoods.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Zhang, K. R. et al. Sustainability of social-ecological systems under conservation projects: lessons from a biodiversity hotspot in western China. Biol. Conserv. 158, 205–213 (2013).

    Article  Google Scholar 

  84. 84.

    Zhai, D. L., Xu, J. C., Dai, Z. C., Cannon, C. H. & Grumbine, R. E. Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Reg. Environ. Change 14, 611–621 (2014).

    Article  Google Scholar 

  85. 85.

    Wang, X. L., Wang, Y. Q. & Wang, Y. J. Use of exotic species during ecological restoration can produce effects that resemble vegetation invasions and other unintended consequences. Ecol. Eng. 52, 247–251 (2013).

    Article  Google Scholar 

  86. 86.

    Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).

    ADS  Google Scholar 

  87. 87.

    Wang, S. L., Tuan, F., Gale, F., Somwaru, A. & Hansen, J. China’s regional agricultural productivity growth in 1985–2007: a multilateral comparison. Agric. Econ. 44, 241–251 (2013).

    Article  CAS  Google Scholar 

  88. 88.

    Yang, H. Livestock development in China: animal production, consumption and genetic resources. J. Anim. Breed. Genet. 130, 249–251 (2013).

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Chen, Y.-f. et al. Agricultural policy, climate factors and grain output: evidence from household survey data in rural China. J. Integr. Agric. 12, 169–183 (2013).

    Article  Google Scholar 

  90. 90.

    Zhang, J. China’s success in increasing per capita food production. J. Exp. Bot. 62, 3707–3711 (2011).

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

    ADS  Article  Google Scholar 

  92. 92.

    Maryna, S. et al. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environ. Res. Lett. 11, 024014 (2016).

    Article  CAS  Google Scholar 

  93. 93.

    Le, C. et al. Eutrophication of lake waters in China: cost, causes, and control. Environ. Manage. 45, 662–668 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  94. 94.

    Jin, X. et al. The evaluation of land consolidation policy in improving agricultural productivity in China. Sci. Rep. 7, 2792 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Song, W. & Pijanowski, B. C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 46, 158–170 (2014).

    Article  Google Scholar 

  96. 96.

    Yan, H., Liu, J., Huang, H. Q., Tao, B. & Cao, M. Assessing the consequence of land use change on agricultural productivity in China. Global Planet. Change 67, 13–19 (2009).

    ADS  Article  Google Scholar 

  97. 97.

    Yao, S. & Li, H. Agricultural productivity changes induced by the Sloping Land Conversion Program: an analysis of Wuqi County in the Loess Plateau region. Environ. Manage. 45, 541–550 (2010).

    ADS  PubMed  Article  Google Scholar 

  98. 98.

    Lu, Q., Xu, B., Liang, F., Gao, Z. & Ning, J. Influences of the Grain-for-Green project on grain security in southern China. Ecol. Indic. 34, 616–622 (2013).

    Article  Google Scholar 

  99. 99.

    Yin, R. S., Liu, C., Zhao, M. J., Yao, S. B. & Liu, H. The implementation and impacts of China’s largest payment for ecosystem services program as revealed by longitudinal household data. Land Use Policy 40, 45–55 (2014).

    Article  Google Scholar 

  100. 100.

    Yi, F. J., Sun, D. Q. & Zhou, Y. H. Grain subsidy, liquidity constraints and food security—impact of the grain subsidy program on the grain-sown areas in China. Food Policy 50, 114–124 (2015).

    Article  Google Scholar 

  101. 101.

    Liu, C., Mullan, K., Liu, H., Zhu, W. Q. & Rong, Q. J. The estimation of long term impacts of China’s key priority forestry programs on rural household incomes. J. For. Econ. 20, 267–285 (2014).

    Google Scholar 

  102. 102.

    Gutiérrez Rodríguez, L. et al. China’s conversion of cropland to forest program: a systematic review of the environmental and socioeconomic effects. Environ. Evid. 5, 21 (2016).

    Article  Google Scholar 

  103. 103.

    Liu, C., Lu, J. Z. & Yin, R. S. An estimation of the effects of China’s priority forestry programs on farmers’ income. Environ. Manage. 45, 526–540 (2010).

    ADS  PubMed  Article  Google Scholar 

  104. 104.

    Uchida, E., Rozelle, S. & Xu, J. Conservation payments, liquidity constraints, and off-farm labor: impact of the Grain-for-Green Program on rural households in China. Am. J. Agric. Econ. 91, 70–86 (2009).

    Article  Google Scholar 

  105. 105.

    Li, H., Yao, S. B., Yin, R. S. & Liu, G. Q. Assessing the decadal impact of China’s Sloping Land Conversion Program on household income under enrollment and earning differentiation. For. Policy Econ. 61, 95–103 (2015).

    Article  Google Scholar 

  106. 106.

    Cao, S., Wang, X., Song, Y., Chen, L. & Feng, Q. Impacts of the Natural Forest Conservation Program on the livelihoods of residents of northwestern China: perceptions of residents affected by the program. Ecol. Econ. 69, 1454–1462 (2010).

    Article  Google Scholar 

  107. 107.

    Wang, Z., Song, K. & Hu, L. China’s largest scale ecological migration in the Three-River Headwater region. Ambio 39, 443–446 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Shu, X. in Ecological Migration, Development and Transformation: A Study of Migration and Poverty Reduction in Ningxia (eds Li, P. & Wang, X.) 21–46 (Springer, Berlin, 2016).

  109. 109.

    Xie, Y. Ecological Migrants: The Relocation of China's Ewenki Reindeer Herders (Berghahn Books, New York, 2015).

    Google Scholar 

  110. 110.

    Mao, X. F., Wei, X. Y. & Xia, J. X. Evaluation of ecological migrants’ adaptation to their new living area in Three-River Headwater wetlands, China. Proc. Environ. Sci. 13, 1346–1353 (2012).

    Article  Google Scholar 

  111. 111.

    Chen, X. D., Lupi, F., He, G. M. & Liu, J. G. Linking social norms to efficient conservation investment in payments for ecosystem services. Proc. Natl Acad. Sci. USA 106, 11812–11817 (2009).

    ADS  PubMed  Article  Google Scholar 

  112. 112.

    UNCTAD. World Investment Report 2014. Investing in the SDGs: An Action Plan. http://unctad.org/en/PublicationsLibrary/wir2014_en.pdf (United Nations Conference on Trade and Development, Switzerland, 2014).

  113. 113.

    Liu, J. G. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  114. 114.

    Cao, S. X., Shang, D., Yue, H. & Ma, H. A win-win strategy for ecological restoration and biodiversity conservation in southern China. Environ. Res. Lett. 12, 044004 (2017).

    Google Scholar 

  115. 115.

    Li, T. et al. Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: their effectiveness and socio-economic relationships. Sci. Total Environ. 607, 911–919 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  116. 116.

    Liu, J. et al. Pandas and People: Coupling Human and Natural Systems for Sustainability (Oxford Univ. Press, Oxford, 2016).

    Google Scholar 

  117. 117.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

  118. 118.

    Bryan, B. A. et al. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity. Glob. Change Biol. 21, 4098–4114 (2015).

    ADS  Article  Google Scholar 

  119. 119.

    Kates, R. W. et al. Sustainability science. Science 292, 641–642 (2001).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Schultz, L., Folke, C., Österblom, H. & Olsson, P. Adaptive governance, ecosystem management, and natural capital. Proc. Natl Acad. Sci. USA 112, 7369–7374 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  121. 121.

    Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).

    ADS  PubMed  Article  CAS  Google Scholar 

  122. 122.

    Central Committee of the Communist Party of China. The 13th Five-Year Plan For Economic and Social Development of the People’s Republic Republic of China 2016–2020. http://en.ndrc.gov.cn/newsrelease/201612/P020161207645765233498.pdf (CCCPC, Beijing, 2015).

  123. 123.

    Foggin, J. M. Rethinking “ecological migration” and the value of cultural continuity: a response to Wang, Song, and Hu. Ambio 40, 100–101 (2011).

    PubMed  Article  Google Scholar 

  124. 124.

    Song, C. H. et al. Sustainability of forests created by China’s Sloping Land Conversion Program: a comparison among three sites in Anhui, Hubei and Shanxi. For. Policy Econ. 38, 161–167 (2014).

    Article  Google Scholar 

  125. 125.

    Guo, J. & Gong, P. Forest cover dynamics from Landsat time-series data over Yan’an city on the Loess Plateau during the Grain for Green Project. Int. J. Remote Sens. 37, 4101–4118 (2016).

    ADS  Article  Google Scholar 

  126. 126.

    Liu, N., Zhou, L. H. & Hauger, J. S. How sustainable is government-sponsored desertification rehabilitation in China? Behavior of households to changes in environmental policies. PLoS One 8, e77510 (2013).

    Google Scholar 

  127. 127.

    Zhen, L. et al. Herders’ willingness to accept versus the public sector’s willingness to pay for grassland restoration in the Xilingol League of Inner Mongolia, China. Environ. Res. Lett. 9, 045003 (2014).

    Article  Google Scholar 

  128. 128.

    He, B., Chen, A. F., Wang, H. L. & Wang, Q. F. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest region in China. Remote Sens. 7, 9998–10016 (2015).

    ADS  Article  Google Scholar 

  129. 129.

    Yang, X. J. & Xu, J. T. Program sustainability and the determinants of farmers’ self-predicted post-program land use decisions: evidence from the Sloping Land Conversion Program (SLCP) in China. Environ. Dev. Econ. 19, 30–47 (2014).

    Article  Google Scholar 

  130. 130.

    Frayer, J., Sun, Z. L., Muller, D., Munroe, D. K. & Xu, J. C. Analyzing the drivers of tree planting in Yunnan, China, with Bayesian networks. Land Use Policy 36, 248–258 (2014).

    Article  Google Scholar 

  131. 131.

    Wang, Z. X. & Lu, Y. Compensation for the conversion of sloping farmland to forest in China: a feasibility study of payment based on carbon sink. J. Environ. Dev. 19, 28–41 (2010).

    Article  Google Scholar 

  132. 132.

    Wang, X., Bennett, J., Xie, C., Zhang, Z. & Liang, D. Estimating non-market environmental benefits of the Conversion of Cropland to Forest and Grassland Program: a choice modeling approach. Ecol. Econ. 63, 114–125 (2007).

    Article  Google Scholar 

  133. 133.

    Kelly, P. & Huo, X. X. Do farmers or governments make better land conservation choices? Evidence from China’s Sloping Land Conversion Program. J. For. Econ. 19, 32–60 (2013).

    Google Scholar 

  134. 134.

    Lu, Y. H., Ma, Z. M., Zhang, L. W., Fu, B. J. & Gao, G. Y. Redlines for the greening of China. Environ. Sci. Policy 33, 346–353 (2013).

    Article  Google Scholar 

  135. 135.

    Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).

    ADS  MathSciNet  PubMed  MATH  Article  CAS  Google Scholar 

  136. 136.

    Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  137. 137.

    He, J. Governing forest restoration: local case studies of Sloping Land Conversion Program in southwest China. For. Policy Econ. 46, 30–38 (2014).

    Article  CAS  Google Scholar 

  138. 138.

    Yi, Y. Y., Kohlin, G. & Xu, J. T. Property rights, tenure security and forest investment incentives: evidence from China’s Collective Forest Tenure Reform. Environ. Dev. Econ. 19, 48–73 (2014).

    Article  Google Scholar 

  139. 139.

    Song, X. Z., Peng, C. H., Zhou, G. M., Jiang, H. & Wang, W. F. Chinese Grain for Green Program led to highly increased soil organic carbon levels: a meta-analysis. Sci. Rep. 4, 4460 (2014).

    Google Scholar 

  140. 140.

    Ma, Z. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Climate Change Engagement Grant from the Australian Department of Foreign Affairs and Trade, as well as by our own institutions, in particular Deakin University. We thank M. Klaassen, D. Driscoll, J. G. Canadell and B. Huang for comments on the manuscript. This work contributes to both the Future Earth and Global Land Programme research agendas.

Reviewer information

Nature thanks R. Costanza, F. Zhang and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

B.A.B. designed the study and wrote the paper. L.G., Y.Y., and X.S. contributed to the writing, assembled the data and photographs, prepared the graphs, and assembled the Supplementary Information. All authors made substantive intellectual contributions to the paper and commented on the manuscript.

Corresponding author

Correspondence to Brett A. Bryan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file includes Supplementary Methods, Supplementary Discussion, Supplementary Tables 1 – 21 and Supplementary Figure 1. The Supplementary Tables document the details of each of the 16 major sustainability programmes reviewed (Tables 1–16), data sources for programme review (Table 17) and the rationale for mapping programme investment to SDGs (Table 18), as well as investment (Table 19) and area (Table 20) data and graphs including a breakdown by province, and area data and graphs including a breakdown by on-ground action (Table 21). Also included are additional references not cited in the main text.

Supplementary Data 1

This file contains investment data and graphs including a breakdown by Province.

Supplementary Data 2

This file contains area data and graphs including a breakdown by Province.

Supplementary Data 3

This file contains area data and graphs including a breakdown by on-ground action.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bryan, B.A., Gao, L., Ye, Y. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018). https://doi.org/10.1038/s41586-018-0280-2

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing