Letter | Published:

Flying couplers above spinning resonators generate irreversible refraction

Naturevolume 558pages569572 (2018) | Download Citation

Abstract

Creating optical components that allow light to propagate in only one direction—that is, that allow non-reciprocal propagation or ‘isolation’ of light—is important for a range of applications. Non-reciprocal propagation of sound can be achieved simply by using mechanical components that spin1,2. Spinning also affects de Broglie waves3, so a similar idea could be applied in optics. However, the extreme rotation rates that would be required, owing to light travelling much faster than sound, lead to unwanted wobbling. This wobbling makes it difficult to maintain the separation between the spinning devices and the couplers to within tolerance ranges of several nanometres, which is essential for critical coupling4,5. Consequently, previous applications of optical6,7,8,9,10,11,12,13,14,15,16,17 and optomechanical10,17,18,19,20 isolation have used alternative methods. In hard-drive technology, the magnetic read heads of a hard-disk drive fly aerodynamically above the rapidly rotating disk with nanometre precision, separated by a thin film of air with near-zero drag that acts as a lubrication layer21. Inspired by this, here we report the fabrication of photonic couplers (tapered fibres that couple light into the resonators) that similarly fly above spherical resonators with a separation of only a few nanometres. The resonators spin fast enough to split their counter-circulating optical modes, making the fibre coupler transparent from one side while simultaneously opaque from the other—that is, generating irreversible transmission. Our setup provides 99.6 per cent isolation of light in standard telecommunication fibres, of the type used for fibre-based quantum interconnects22. Unlike flat geometries, such as between a magnetic head and spinning disk, the saddle-like, convex geometry of the fibre and sphere in our setup makes it relatively easy to bring the two closer together, which could enable surface-science studies at nanometre-scale separations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

  2. 2.

    Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

  3. 3.

    Hasselbach, F. & Nicklaus, M. Sagnac experiment with electrons: observation of the rotational phase shift of electron waves in vacuum. Phys. Rev. A 48, 143–151 (1993).

  4. 4.

    Dubreuil, N. et al. Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres. Opt. Lett. 20, 813–815 (1995).

  5. 5.

    Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

  6. 6.

    Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

  7. 7.

    Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

  8. 8.

    Ibrahim, S. K., Bhandare, S., Sandel, D., Zhang, H. & Noe, R. Non-magnetic 30 dB integrated optical isolator in III/V material. Electron. Lett. 40, 1293–1294 (2004).

  9. 9.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009); corrigendum 3, 303 (2009).

  10. 10.

    Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

  11. 11.

    Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

  12. 12.

    Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

  13. 13.

    Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

  14. 14.

    Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012).

  15. 15.

    Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

  16. 16.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

  17. 17.

    Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

  18. 18.

    Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

  19. 19.

    Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

  20. 20.

    Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

  21. 21.

    Gross, W. A. Gas Film Lubrication (Wiley, New York, 1962).

  22. 22.

    Shomroni, I., Rosenblum, S., Lovsky, Y. & Bechler, O. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

  23. 23.

    Franke-Arnold, S., Gibson, G., Boyd, R. W. & Padgett, M. J. Rotary photon drag enhanced by a slow-light medium. Science 333, 65–67 (2011).

  24. 24.

    Matthewson, M., Kurkjian, C. R. & Gulati, S. T. Strength measurement of optical fibers by bending. J. Am. Ceram. Soc. 69, 815–821 (1986).

  25. 25.

    Malykin, G. B. The Sagnac effect: correct and incorrect explanations. Phys. Uspekhi 43, 1229–1252 (2000).

  26. 26.

    Mazzei, A. et al. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett. 99, 173603 (2007).

  27. 27.

    Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

  28. 28.

    Li, J., Liu, B., Hua, W. & Ma, Y. Effects of intermolecular forces on deep sub-10 nm spaced sliders. IEEE Trans. Magn. 38, 2141–2143 (2002).

  29. 29.

    Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).

  30. 30.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

  31. 31.

    Gross, W. A. et al. Fluid Film Lubrication (John Wiley and Sons, New York, 1980).

  32. 32.

    Busse, W. F. & Denton, W. H. Water-lubricated soft-rubber bearings. Trans. Am. Soc. Mech. Eng. 54, 3–10 (1932).

  33. 33.

    Blok, H. & Van Rossum, J. J. The foil bearing—a new departure in hydrodynamic lubrication. Lubr. Eng. 9, 316–320 (1953).

  34. 34.

    Eshel, A. Compressibility effects on the infinitely wide, perfectly flexible foil bearing. J. Lubr. Technol. 90, 221–225 (1968).

  35. 35.

    Eshel, A. & Elrod, H. G. Stiffness effects on the infinitely wide foil bearing. J. Lubr. Technol. 89, 92–97 (1967).

  36. 36.

    Langlois, W. E. The lightly loaded foil bearing at zero angle of wrap. IBM J. Res. Develop. 7, 112–116 (1963).

  37. 37.

    Jennings, S. G. The mean free path in air. J. Aerosol Sci. 19, 159–166 (1988).

  38. 38.

    Fukui, S. & Kaneko, R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report—derivation of a generalized lubrication equation including thermal creep flow. J. Tribol. 110, 253–261 (1988).

  39. 39.

    Shen, S. & Chen, G. in Encyclopedia of Tribology (eds Wang, Q. J. & Chung, Y.-W.) 2309–2313 (Springer, New York, 2013).

Download references

Acknowledgements

We thank U. Hofi, Z. Katz, Y. Halupovich and B. Khachatryan for their help. This work was funded by the Israeli Centers for Research Excellence (I-CORE), ‘Circle of Light’ Excellence Center, the Israel Science Foundation (2013/15), the Israel Ministry of Science, Technology and Space, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award number FA9550-14-1-0040, the Army Research Office (ARO) under grant number 73315PH, the AOARD under grant number FA2386-18-1-4045, the CREST under grant number JPMJCR1676, the IMPACT programme of JST, the RIKEN-AIST Challenge Research Fund, the JSPS-RFBR under grant number 17-52-50023, and the Sir John Templeton Foundation.

Reviewer information

Nature thanks A. Alù and M. Levy for their contribution to the peer review of this work.

Author information

Author notes

  1. These authors contributed equally: Shai Maayani, Raphael Dahan.

Affiliations

  1. Faculty of Mechanical Engineering, Technion, Haifa, Israel

    • Shai Maayani
    • , Raphael Dahan
    • , Yuri Kligerman
    • , Eduard Moses
    •  & Tal Carmon
  2. J-Rom, Haifa, Israel

    • Eduard Moses
  3. CREOL/College of Optics and Photonics, University of Central Florida, Orlando, FL, USA

    • Absar U. Hassan
    •  & Demetrios N. Christodoulides
  4. Physics Department, Hunan Normal University, Changsha, China

    • Hui Jing
  5. Physics Department, University of Michigan, Ann Arbor, MI, USA

    • Franco Nori
  6. Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Japan

    • Franco Nori

Authors

  1. Search for Shai Maayani in:

  2. Search for Raphael Dahan in:

  3. Search for Yuri Kligerman in:

  4. Search for Eduard Moses in:

  5. Search for Absar U. Hassan in:

  6. Search for Hui Jing in:

  7. Search for Franco Nori in:

  8. Search for Demetrios N. Christodoulides in:

  9. Search for Tal Carmon in:

Contributions

S.M. and R.D. performed the experiments. A.U.H., H.J., F.N., E.M., Y.K. and D.N.C. performed the theoretical analysis. T.C. supervised the work.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Tal Carmon.

Extended data figures and tables

  1. Extended Data Table 1 Effects of lubricant compressibility

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41586-018-0245-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.