Triggers of tree mortality under drought


Severe droughts have caused widespread tree mortality across many forest biomes with profound effects on the function of ecosystems and carbon balance. Climate change is expected to intensify regional-scale droughts, focusing attention on the physiological basis of drought-induced tree mortality. Recent work has shown that catastrophic failure of the plant hydraulic system is a principal mechanism involved in extensive crown death and tree mortality during drought, but the multi-dimensional response of trees to desiccation is complex. Here we focus on the current understanding of tree hydraulic performance under drought, the identification of physiological thresholds that precipitate mortality and the mechanisms of recovery after drought. Building on this, we discuss the potential application of hydraulic thresholds to process-based models that predict mortality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phases of drought response in plants.
Fig. 2: Non-invasive imaging techniques have provided new insights into embolism formation and spread in the xylem.
Fig. 3: Tree hydraulic traits associated with drought-induced mortality.


  1. 1.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  2. 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS  PubMed  Article  CAS  Google Scholar 

  3. 3.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    ADS  Article  CAS  Google Scholar 

  4. 4.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  5. 5.

    Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  6. 6.

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  7. 7.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Tyree, M. T. & Zimmermann, M. H. Xylem Structure and the Ascent of Sap (Springer, New York, 2002).

  9. 9.

    Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).

    PubMed  Article  Google Scholar 

  10. 10.

    Kursar, T. A. et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102 (2009).

    Article  Google Scholar 

  11. 11.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008). This study introduces a theoretical framework for understanding physiological mechanisms that underpin drought-induced mortality in trees.

    PubMed  Article  Google Scholar 

  12. 12.

    Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009). This study quantitatively links hydraulic failure thresholds to whole-plant mortality.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Urli, M. et al. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol. 33, 672–683 (2013).

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Nardini, A., Battistuzzo, M. & Savi, T. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. 200, 322–329 (2013).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Venturas, M. D. et al. Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California’s historic drought of 2014. PLoS ONE 11, e0159145 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Anderegg, W. R. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).

    ADS  PubMed  Article  Google Scholar 

  17. 17.

    Davis, S. D. et al. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. Am. J. Bot. 89, 820–828 (2002).

    PubMed  Article  Google Scholar 

  18. 18.

    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    PubMed  Article  Google Scholar 

  19. 19.

    Duan, H. et al. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 37, 1598–1613 (2014).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).

    Article  Google Scholar 

  21. 21.

    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl Acad. Sci. USA 108, 1474–1478 (2011).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    ADS  PubMed  Article  CAS  Google Scholar 

  23. 23.

    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    ADS  PubMed  Article  CAS  Google Scholar 

  24. 24.

    Asner, G. P. et al. Progressive forest canopy water loss during the 2012–2015 California drought. Proc. Natl Acad. Sci. USA 113, E249–E255 (2016).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Moore, G. W. et al. Tree mortality from an exceptional drought spanning mesic to semiarid ecoregions. Ecol. Appl. 26, 602–611 (2016).

    PubMed  Article  Google Scholar 

  26. 26.

    USDA Forest Service Pacific Southwest Region. Aerial Detection Surveys Report: Summary for May 15–19 Report No. fseprd506698 (USDA Forest Service, 2016).

  27. 27.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010). This study summarizes forest mortality events associated with drought and heat over the last four decades.

    Article  Google Scholar 

  28. 28.

    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).

    Article  Google Scholar 

  29. 29.

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    ADS  PubMed  Article  CAS  Google Scholar 

  30. 30.

    da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).

    PubMed  Article  Google Scholar 

  31. 31.

    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Philos. Soc. 92, 1434–1458 (2016).

    PubMed  Article  Google Scholar 

  32. 32.

    Slatyer, R. O. Plant–Water relationships (Academic, New York, 1967).

  33. 33.

    Debenedetti, P. G. Metastable Liquids: Concepts and Principles (Princeton Univ. Press, Princeton, 1996).

  34. 34.

    Rodriguez-Dominguez, C. M., Carins Murphy, M. R., Lucani, C. & Brodribb, T. J. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytol. 218, 1025–1035 (2018).

    PubMed  Article  Google Scholar 

  35. 35.

    Scholander, P. F., Hammel, H. T., Bradstreet, E. D. & Hemmingsen, E. A. Sap pressure in vascular plants. Science 148, 339–346 (1965).

  36. 36.

    Hochberg, U. et al. Stomatal closure, basal leaf embolism and shedding protect the hydraulic integrity of grape stems. Plant Physiol. (2017).

  37. 37.

    Martin-StPaul, N., Delzon, S. & Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20, 1437–1447 (2017). The absolute limit at which stomata must close to avoid mortality under drought is described.

    PubMed  Article  Google Scholar 

  38. 38.

    Li, X. et al. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 41, 646–660 (2018).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant Cell Environ. 40, 237–248 (2017).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Powles, S. B. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 35, 15–44 (1984).

    Article  CAS  Google Scholar 

  41. 41.

    Mitchell, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol. 197, 862–872 (2013).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Dietze, M. C. & Matthes, J. H. A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecol. Lett. 17, 1418–1426 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Kerstiens, G. Cuticular water permeability and its physiological significance. J. Exp. Bot. 47, 1813–1832 (1996).

    Article  CAS  Google Scholar 

  45. 45.

    Oren, R. & Pataki, D. E. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127, 549–559 (2001).

    ADS  PubMed  Article  Google Scholar 

  46. 46.

    Zhang, Y.-J., Rockwell, F. E., Graham, A. C., Alexander, T. & Holbrook, N. M. Reversible leaf xylem collapse: a potential “circuit breaker” against cavitation. Plant Physiol. 172, 2261–2274 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    McElrone, A. J. et al. Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant Cell Environ. 30, 1411–1421 (2007).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Sack, L. & Holbrook, N. M. Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361–381 (2006).

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Cuneo, I. F., Knipfer, T., Brodersen, C. R. & McElrone, A. J. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought. Plant Physiol. 172, 1669–1678 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Borchert, R. & Pockman, W. T. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol. 25, 457–466 (2005).

    PubMed  Article  Google Scholar 

  51. 51.

    Choat, B., Brodersen, C. R. & McElrone, A. J. Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. New Phytol. 205, 1095–1105 (2015).

    PubMed  Article  Google Scholar 

  52. 52.

    Brodribb, T. J. et al. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol. 209, 1403–1409 (2016).

    PubMed  Article  Google Scholar 

  53. 53.

    Tyree, M. T., Cochard, H., Cruiziat, P., Sinclair, B. & Ameglio, T. Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant Cell Environ. 16, 879–882 (1993).

    Article  Google Scholar 

  54. 54.

    Rood, S. B., Patiño, S., Coombs, K. & Tyree, M. T. Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees 14, 248–257 (2000).

    Article  Google Scholar 

  55. 55.

    Choat, B. et al. Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiol. 170, 273–282 (2016).

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Larter, M. et al. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytol. 215, 97–112 (2017).

    ADS  PubMed  Article  Google Scholar 

  57. 57.

    Pittermann, J. The evolution of water transport in plants: an integrated approach. Geobiology 8, 112–139 (2010).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Blackman, C. J. et al. Toward an index of desiccation time to tree mortality under drought. Plant Cell Environ. 39, 2342–2345 (2016). A process-based approach is used to model desiccation time to mortality in trees under drought.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Bartlett, M. K., Klein, T., Jansen, S., Choat, B. & Sack, L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl Acad. Sci. USA 113, 13098–13103 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012). Global synthesis demonstrating a convergence in tree hydraulic safety margins across forest biomes.

    ADS  PubMed  Article  CAS  Google Scholar 

  61. 61.

    Maherali, H., Pockman, W. T. & Jackson, R. B. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199 (2004).

    Article  Google Scholar 

  62. 62.

    Lens, F. et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 709–723 (2011).

    PubMed  Article  Google Scholar 

  63. 63.

    Pittermann, J. et al. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiol. 153, 1919–1931 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability influences species’ bioclimatic limits in a diverse group of woody angiosperms. Oecologia 168, 1–10 (2012).

    ADS  PubMed  Article  Google Scholar 

  65. 65.

    Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J. & Hölttä, T. Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytol. 208, 396–409 (2015).

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article  Google Scholar 

  67. 67.

    Anderegg, W. R. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl Acad. Sci. USA 113, 5024–5029 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    ADS  PubMed  CAS  Google Scholar 

  69. 69.

    Lamy, J.-B. et al. Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol. 201, 874–886 (2014).

    PubMed  Article  Google Scholar 

  70. 70.

    Schuldt, B. et al. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytol. 210, 443–458 (2016).

    PubMed  Article  Google Scholar 

  71. 71.

    Mencuccini, M. & Grace, J. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol. 15, 1–10 (1995).

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Magnani, F., Mencuccini, M. & Grace, J. Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ. 23, 251–263 (2000).

    Article  Google Scholar 

  73. 73.

    Maherali, H. & DeLucia, E. H. Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol. 20, 859–867 (2000).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Martínez-Vilalta, J. et al. Hydraulic adjustment of Scots pine across Europe. New Phytol. 184, 353–364 (2009). Comprehensive study of intra-specific variation in hydraulic traits across a broad climatic gradient.

    PubMed  Article  Google Scholar 

  75. 75.

    Wortemann, R. et al. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol. 31, 1175–1182 (2011).

    PubMed  Article  Google Scholar 

  76. 76.

    Hogg, E. H., Brandt, J. P. & Kochtubajda, B. Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can. J. For. Res. 32, 823–832 (2002).

    Article  Google Scholar 

  77. 77.

    Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Delzon, S. & Cochard, H. Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytol. 203, 355–358 (2014).

    PubMed  Article  Google Scholar 

  79. 79.

    Anderegg, W. R. L. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).

    ADS  Article  CAS  Google Scholar 

  80. 80.

    McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300 (2016).

    ADS  Article  Google Scholar 

  81. 81.

    Brodribb, T. J., Bowman, D. J. M. S., Nichols, S., Delzon, S. & Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188, 533–542 (2010).

    PubMed  Article  Google Scholar 

  82. 82.

    Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).

    Article  Google Scholar 

  83. 83.

    McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321 (2013).

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Gustafson, E. J. & Sturtevant, B. R. Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems 16, 60–74 (2013).

    Article  Google Scholar 

  85. 85.

    Mitchell, P. J. et al. An ecoclimatic framework for evaluating the resilience of vegetation to water deficit. Glob. Chang. Biol. 22, 1677–1689 (2016).

    ADS  Article  Google Scholar 

  86. 86.

    O’Sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Chang. Biol. 23, 209–223 (2017).

    ADS  Article  Google Scholar 

  87. 87.

    Adams, H. D. et al. Empirical and process-based approaches to climate-induced forest mortality models. Front. Plant Sci. 4, 438 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).

    ADS  Article  Google Scholar 

  89. 89.

    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016).

    PubMed  Article  Google Scholar 

  90. 90.

    Davi, H. & Cailleret, M. Assessing drought-driven mortality trees with physiological process-based models. Agric. For. Meteorol. 232, 279–290 (2017).

    Article  Google Scholar 

  91. 91.

    Bartlett, M. K., Scoffoni, C. & Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol. Lett. 15, 393–405 (2012). Data synthesis that links the point at which leaf turgor is lost to drought tolerance in plants.

    PubMed  Article  Google Scholar 

  92. 92.

    Limousin, J.-M., Longepierre, D., Huc, R. & Rambal, S. Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Tree Physiol. 30, 1026–1036 (2010).

    PubMed  Article  Google Scholar 

  93. 93.

    Vilagrosa, A., Bellot, J., Vallejo, V. R. & Gil-Pelegrín, E. Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J. Exp. Bot. 54, 2015–2024 (2003).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Dahlin, K. M., Ponte, D. D., Setlock, E. & Nagelkirk, R. Global patterns of drought deciduous phenology in semi-arid and savanna-type ecosystems. Ecography 40, 314–323 (2016).

    Article  Google Scholar 

  95. 95.

    De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic–xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).

    ADS  Article  Google Scholar 

  96. 96.

    Aguadé, D., Poyatos, R., Rosas, T. & Martínez-Vilalta, J. Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. in a montane forest undergoing a vegetation shift. Forests 6, 2505 (2015).

    Article  Google Scholar 

  97. 97.

    Donovan, L., Linton, M. & Richards, J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 129, 328–335 (2001).

    ADS  PubMed  Article  CAS  Google Scholar 

  98. 98.

    Nobel, P. S. & Cui, M. Hydraulic conductances of the soil, the root–soil air gap, and the root: changes for desert succulents in drying soil. J. Exp. Bot. 43, 319–326 (1992).

    Article  Google Scholar 

  99. 99.

    Eller, C. B., Lima, A. L. & Oliveira, R. S. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489–501 (2016).

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Sinclair, T. R. Model analysis of plant traits leading to prolonged crop survival during severe drought. Field Crops Res. 68, 211–217 (2000).

    Article  Google Scholar 

  101. 101.

    Manzoni, S., Katul, G. & Porporato, A. A dynamical system perspective on plant hydraulic failure. Wat. Resour. Res. 50, 5170–5183 (2014).

    ADS  Article  Google Scholar 

  102. 102.

    Gentine, P., Guérin, M., Uriarte, M., McDowell, N. G. & Pockman, W. T. An allometry-based model of the survival strategies of hydraulic failure and carbon starvation. Ecohydrology 9, 529–546 (2016).

    Article  Google Scholar 

  103. 103.

    Waring, R. H. Characteristics of trees predisposed to die. Bioscience 37, 569–574 (1987).

    Article  Google Scholar 

  104. 104.

    Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).

    Article  Google Scholar 

  105. 105.

    De Micco, V., Balzano, A., Wheeler, E. A. & Baas, P. Tyloses and gums: a review of structure, function and occurrence of vessel occlusions. IAWA J. 37, 186–205 (2016).

    Article  Google Scholar 

  106. 106.

    Zeppel, M. J. B. et al. Drought and resprouting plants. New Phytol. 206, 583–589 (2015).

    PubMed  Article  Google Scholar 

  107. 107.

    Bond, W. J. & Midgley, J. J. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol. Evol. 16, 45–51 (2001).

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Brodersen, C. R. & McElrone, A. J. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front. Plant Sci. 4, 108 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Zwieniecki, M. A. & Holbrook, N. M. Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci. 14, 530–534 (2009).

    PubMed  Article  CAS  Google Scholar 

  110. 110.

    Nardini, A., Savi, T., Trifilò, P. & Lo Gullo, M. A. in Progress in Botany Vol. 79(eds Cánovas, F. et al.) 197–231 (Springer, Cham, 2017).

  111. 111.

    Cobb, A. R., Choat, B. & Holbrook, N. M. Dynamics of freeze–thaw embolism in Smilax rotundifolia (Smilacaceae). Am. J. Bot. 94, 640–649 (2007).

    PubMed  Article  Google Scholar 

  112. 112.

    Cochard, H., Lemoine, D., Améglio, T. & Granier, A. Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol. 21, 27–33 (2001).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Sperry, J. S., Holbrook, N. M., Zimmermann, M. H. & Tyree, M. T. Spring filling of xylem vessels in wild grapevine. Plant Physiol. 83, 414–417 (1987).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114.

    Kaufmann, I. et al. Functional repair of embolized vessels in maize roots after temporal drought stress, as demonstrated by magnetic resonance imaging. New Phytol. 184, 245–256 (2009).

    PubMed  Article  Google Scholar 

  115. 115.

    McCully, M. E., Huang, C. X. & Ling, L. E. C. Daily embolism and refilling of xylem vessels in the roots of field-grown maize. New Phytol. 138, 327–342 (1998).

    Article  Google Scholar 

  116. 116.

    Taneda, H. & Sperry, J. S. A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol. 28, 1641–1651 (2008).

    PubMed  Article  Google Scholar 

  117. 117.

    Zwieniecki, M. A. & Holbrook, N. M. Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant Cell Environ. 21, 1173–1180 (1998).

    Article  Google Scholar 

  118. 118.

    Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A. & Shackel, K. A. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol. 154, 1088–1095 (2010). First study to utilize synchrotron-based imaging methods for non-destructive visualization of xylem function.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Charrier, G. et al. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiol. 172, 1657–1668 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120.

    Clearwater, M. J. & Clark, C. J. In vivo magnetic resonance imaging of xylem vessel contents in woody lianas. Plant Cell Environ. 26, 1205–1214 (2003).

    Article  Google Scholar 

  121. 121.

    Knipfer, T., Brodersen, C. R., Zedan, A., Kluepfel, D. A. & McElrone, A. J. Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography. Tree Physiol. 35, 744–755 (2015).

    PubMed  Article  CAS  Google Scholar 

  122. 122.

    Skelton, R. P., Brodribb, T. J., McAdam, S. A. M. & Mitchell, P. J. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. New Phytol. 215, 1399–1412 (2017).

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Fukuda, H. Xylogenesis: initiation, progression, and cell death. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 299–325 (1996).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Davies, W., Metcalfe, J., Lodge, T. & da Costa, A. R. Plant growth substances and the regulation of growth under drought. Funct. Plant Biol. 13, 105–125 (1986).

    CAS  Google Scholar 

  125. 125.

    Liang, E., Balducci, L., Ren, P. & Rossi, S. in Secondary Xylem Biology: Origins, Functions, and Applications (eds Kim, Y.S. et al.) 45–58 (Academic, Cambridge, 2016).

  126. 126.

    Hartmann, H. Will a 385 million year-struggle for light become a struggle for water and for carbon? – How trees may cope with more frequent climate change-type drought events. Glob. Chang. Biol. 17, 642–655 (2011).

    ADS  Article  Google Scholar 

  127. 127.

    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Kozlowski, T. & Pallardy, S. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 68, 270–334 (2002).

    Article  Google Scholar 

  129. 129.

    Pagay, V. et al. A microtensiometer capable of measuring water potentials below −10 MPa. Lab Chip 14, 2806–2817 (2014).

    PubMed  Article  CAS  Google Scholar 

  130. 130.

    Luo, Z. et al. Responses of plant water use to a severe summer drought for two subtropical tree species in the central southern China. J. Hydrol. 8, 1–9 (2016).

    CAS  Google Scholar 

  131. 131.

    Cochard, H. et al. Methods for measuring plant vulnerability to cavitation: a critical review. J. Exp. Bot. 64, 4779–4791 (2013).

    PubMed  Article  CAS  Google Scholar 

  132. 132.

    Poyatos, R. et al. SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiol. 36, 1449–1455 (2016).

    PubMed  Article  Google Scholar 

  133. 133.

    McDowell, N. G. et al. Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci. 20, 114–123 (2015).

    PubMed  Article  CAS  Google Scholar 

Download references


We thank S. Stuart, H. Cochard and M. Holbrook for insightful comments and discussion during the preparation of the Review. Micro-computed tomography images included in Fig. 2 were collected during beam-time allocations at the Imaging and Medical beam line (Australian Synchrotron) and TOMCAT beam line (Swiss Light Source). B.C., T.J.B. and B.E.M. acknowledge support from the Australian Research Council (FT130101115; LP140100232; DP170100761). R.L. was supported by a Marie Curie Fellowship (FP7PEOPLE-2013-IOF-624473).

Reviewer information

Nature thanks B. Engelbrecht, N. G. McDowell and M. Mencuccini for their contribution to the peer review of this work.

Author information




All authors contributed to writing and planning of the manuscript. B.C., T.J.B. and B.E.M. developed the initial outline and synopsis of the Review. B.C. was responsible for the coordination of the writing of the manuscript. B.C. and C.R.B. prepared figures and the table.

Corresponding author

Correspondence to Brendan Choat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

This file contains a list of plant traits (physiological and morphological) that determine rate of decline in plant water potential during drought and thresholds of hydraulic failure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choat, B., Brodribb, T.J., Brodersen, C.R. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing