Enantioselective remote meta-C–H arylation and alkylation via a chiral transient mediator

Article metrics


Enantioselective carbon–hydrogen (C–H) activation reactions by asymmetric metallation could provide new routes for the construction of chiral molecules1,2. However, current methods are typically limited to the formation of five- or six-membered metallacycles, thereby preventing the asymmetric functionalization of C–H bonds at positions remote to existing functional groups. Here we report enantioselective remote C–H activation using a catalytic amount of a chiral norbornene as a transient mediator, which relays initial ortho-C–H activation to the meta position. This was used in the enantioselective meta-C–H arylation of benzylamines, as well as the arylation and alkylation of homobenzylamines. The enantioselectivities obtained using the chiral transient mediator are comparable across different classes of substrates containing either neutral σ-donor or anionic coordinating groups. This relay strategy could provide an alternative means to remote chiral induction, one of the most challenging problems in asymmetric catalysis3,4.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Enantioselective C(sp2)–H activation.
Fig. 2: Enantioselective meta-C–H arylation of diarylmethylamines.
Fig. 3: Enantioselective meta-C–H activation of homobenzylamines.


  1. 1.

    Giri, R., Shi, B.-F., Engle, K. M., Maugel, N. & Yu, J.-Q. Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chem. Soc. Rev. 38, 3242–3272 (2009).

  2. 2.

    Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

  3. 3.

    Clayden, J., Lund, A., Vallverdú, L. & Helliwell, M. Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431, 966–971 (2004).

  4. 4.

    Hurtley, A. E., Stone, E. A., Metrano, A. J. & Miller, S. J. Desymmetrization of diarylmethylamido bis(phenols) through peptide-catalyzed bromination: enantiodivergence as a consequence of a 2 amu alteration at an achiral residue within the catalyst. J. Org. Chem. 82, 11326–11336 (2017).

  5. 5.

    Kakiuchi, F., Gendre, P. L., Yamada, A., Ohtaki, H. & Murai, S. Atropselective alkylation of biaryl compounds by means of transition metal-catalyzed C–H/olefin coupling. Tetrahedron: Asymmetry 11, 2647–2651 (2000).

  6. 6.

    Shi, B.-F., Maugel, N., Zhang, Y.-H. & Yu, J.-Q. PdII-catalyzed enantioselective activation of C(sp2)–H and C(sp3)–H bonds using monoprotected amino acids as chiral ligands. Angew. Chem. Int. Ed. 47, 4882–4886 (2008).

  7. 7.

    Shi, B.-F., Zhang, Y. H., Lam, J. K., Wang, D. H. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C–H olefination of diphenylacetic acids. J. Am. Chem. Soc. 132, 460–461 (2010).

  8. 8.

    Du, Z. J. et al. Pd(II)-catalyzed enantioselective synthesis of P-stereogenic phosphinamides via desymmetric C–H arylation. J. Am. Chem. Soc. 137, 632–635 (2015).

  9. 9.

    Gao, D.-W., Shi, Y.-C., Gu, Q., Zhao, Z.-L. & You, S.-L. Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed direct coupling with arylboronic acids. J. Am. Chem. Soc. 135, 86–89 (2013).

  10. 10.

    Pi, C. et al. Redox of ferrocene controlled asymmetric dehydrogenative Heck reaction via palladium-catalyzed dual C–H bond activation. Chem. Sci. 4, 2675–2679 (2013).

  11. 11.

    Chu, L., Xiao, K.-J. & Yu, J.-Q. Room-temperature enantioselective C–H iodination via kinetic resolution. Science 346, 451–455 (2014).

  12. 12.

    Gao, D.-W., Gu, Q. & You, S.-L. Pd(II)-catalyzed intermolecular direct C–H bond iodination: an efficient approach toward the synthesis of axially chiral compounds via kinetic resolution. ACS Catal. 4, 2741–2745 (2014).

  13. 13.

    Albicker, M. R. & Cramer, N. Enantioselective palladium-catalyzed direct arylations at ambient temperature: access to indanes with quaternary stereocenters. Angew. Chem. Int. Ed. 48, 9139–9142 (2009).

  14. 14.

    Shintani, R., Otomo, H., Ota, K. & Hayashi, T. Palladium-catalyzed asymmetric synthesis of silicon-stereogenic dibenzosiloles via enantioselective C–H bond functionalization. J. Am. Chem. Soc. 134, 7305–7308 (2012).

  15. 15.

    Kuninobu, Y., Yamauchi, K., Tamura, N., Seiki, T. & Takai, K. Rhodium-catalyzed asymmetric synthesis of spirosilabifluorene derivatives. Angew. Chem. Int. Ed. 52, 1520–1522 (2013).

  16. 16.

    Lee, T., Wilson, T. W., Berg, R., Ryberg, P. & Hartwig, J. F. Rhodium-catalyzed enantioselective silylation of arene C–H bonds: desymmetrization of diarylmethanols. J. Am. Chem. Soc. 137, 6742–6745 (2015).

  17. 17.

    Sun, Y. & Cramer, N. Rhodium(III)-catalyzed enantiotopic C–H activation enables access to P-chiral cyclic phosphinamides. Angew. Chem. Int. Ed. 56, 364–367 (2017).

  18. 18.

    Shibata, T. & Shizuno, T. Iridium-catalyzed enantioselective C–H alkylation of ferrocenes with alkenes using chiral diene ligands. Angew. Chem. Int. Ed. 53, 5410–5413 (2014).

  19. 19.

    Saidi, O. et al. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011).

  20. 20.

    Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

  21. 21.

    Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

  22. 22.

    Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

  23. 23.

    Wang, X.-C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

  24. 24.

    Dong, Z., Wang, J. & Dong, G. Simple amine-directed meta-selective C–H arylation via Pd/norbornene catalysis. J. Am. Chem. Soc. 137, 5887–5890 (2015).

  25. 25.

    Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R.-Y. & Yu, J.-Q. Ligand-enabled meta-C–H alkylation and arylation using a modified norbornene. J. Am. Chem. Soc. 137, 11574–11577 (2015).

  26. 26.

    Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

  27. 27.

    Della Ca’, N., Fontana, M., Motti, E. & Catellani, M. Pd/norbornene: a winning combination for selective aromatic functionalization via C−H bond activation. Acc. Chem. Res. 49, 1389–1400 (2016).

  28. 28.

    Wang, P., Farmer, M. E. & Yu, J.-Q. Ligand-promoted meta-C-H functionalization of benzylamines. Angew. Chem. Int. Ed. 56, 5125–5129 (2017).

  29. 29.

    Ding, Q. et al. Ligand-enabled meta-selective C–H arylation of nosyl-protected phenethylamines, benzylamines, and 2-aryl anilines. J. Am. Chem. Soc. 139, 417–425 (2017).

  30. 30.

    Albrecht, B. K. & Williams, R. M. A concise, total synthesis of the TMC-95A/B proteasome inhibitors. Proc. Natl Acad. Sci. U.S.A. 101, 11949–11954 (2004).

  31. 31.

    Musaev, D. G., Kaledin, A., Shi, B.-F. & Yu, J.-Q. Key mechanistic features of enantioselective C–H bond activation reactions catalyzed by [(chiral mono-N-protected amino acid)-Pd(II)] complexes. J. Am. Chem. Soc. 134, 1690–1698 (2012).

  32. 32.

    Plata, R. E. et al. A role for Pd(IV) in catalytic enantioselective C–H functionalization with monoprotected amino acid ligands under mild conditions. J. Am. Chem. Soc. 139, 9238–9245 (2017).

  33. 33.

    Jiao, L., Herdtweck, E. & Bach, T. Pd(II)-catalyzed regioselective 2-alkylation of indoles via a norbornene-mediated C–H activation: mechanism and applications. J. Am. Chem. Soc. 134, 14563–14572 (2012).

Download references


We acknowledge The Scripps Research Institute, the National Institutes of Health (National Institute of General Medical Sciences grant 5R01GM102265) and Shanghai RAAS Blood Products Co. Ltd for their financial support. Y.S. thanks Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents.

Reviewer information

Nature thanks M. Catellani, G. Chen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

J.-Q.Y. and H.S. conceived the concept. H.S. developed the enantioselective remote C−H activation. H.S. and A.N.H. performed the mechanistic study. H.S., A.N.H., Y.S. and Q.S. prepared reaction substrates. J.-Q.Y. directed the project.

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

This file contains General Information, Experimental Section, X-Ray Crystallographic Data, NMR Spectra, SFC Traces and References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.