Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Comprehensive suppression of single-molecule conductance using destructive σ-interference


The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material1) shows exponential attenuation with increasing length2, a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated3,4,5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference6, a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires7, we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of coherent electron transport and model transmission.
Fig. 2: Calculated transport properties of Si4, Si222, Si222-cut and Si2-Si222-Si2.
Fig. 3: Synthesis scheme and experimental single-molecule conductance, thermopower and noise data.
Fig. 4: Experimental single Au–molecule–Au junction conductance against molecular length.

Similar content being viewed by others


  1. Kingon, A. I., Maria, J.-P. & Streiffer, S. K. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. Nitzan, A. Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681–750 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Mayor, M. et al. Electric current through a molecular rod—relevance of the position of the anchor groups. Angew. Chem. Int. Ed. 42, 5834–5838 (2003).

    Article  CAS  Google Scholar 

  4. Guédon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotech. 7, 305–309 (2012).

    Article  ADS  CAS  Google Scholar 

  5. Arroyo, C. R. et al. Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem. Int. Ed. 52, 3152–3155 (2013).

    Article  CAS  Google Scholar 

  6. Sautet, P. & Joachim, C. Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem. Phys. Lett. 153, 511–516 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Su, T. A., Li, H., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

    Article  ADS  CAS  Google Scholar 

  9. Ha, Y.-G., Everaerts, K., Hersam, M. C. & Marks, T. J. Hybrid gate dielectric materials for unconventional electronic circuitry. Acc. Chem. Res. 47, 1019–1028 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Robertson, J. & Wallace, R. M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. Rep. 88, 1–41 (2015).

    Article  Google Scholar 

  11. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  ADS  Google Scholar 

  12. Trouwborst, M. L. et al. Transition voltage spectroscopy and the nature of vacuum tunneling. Nano Lett. 11, 614–617 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Andrews, D. Q., Solomon, G. C., Van Duyne, R. P. & Ratner, M. A. Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J. Am. Chem. Soc. 130, 17309–17319 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Li, H. et al. Extreme conductance suppression in molecular siloxanes. J. Am. Chem. Soc. 139, 10212–10215 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Borges, A., Fung, E. D., Ng, F., Venkataraman, L. & Solomon, G. C. Probing the conductance of the σ-system of bipyridine using destructive interference. J. Phys. Chem. Lett. 7, 4825–4829 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Adak, O. et al. Flicker noise as a probe of electronic interaction at metal–single molecule interfaces. Nano Lett. 15, 4143–4149 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Tsuji, H., Michl, J. & Tamao, K. Recent experimental and theoretical aspects of the conformational dependence of UV absorption of short chain peralkylated oligosilanes. J. Organomet. Chem. 685, 9–14 (2003).

    Article  CAS  Google Scholar 

  18. Tsuji, H., Terada, M., Toshimitsu, A. & Tamao, K. σσ* transition in anti,cisoid alternating oligosilanes: clear-cut evidence for suppression of conjugation effect by a cisoid turn. J. Am. Chem. Soc. 125, 7486–7487 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Bande, A. & Michl, J. Conformational dependence of σ-electron delocalization in linear chains: permethylated oligosilanes. Chem. Eur. J. 15, 8504–8517 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring local currents in molecular junctions. Nat. Chem. 2, 223–228 (2010).

    Article  PubMed  CAS  Google Scholar 

  21. George, C. B., Ratner, M. A. & Lambert, J. B. Strong conductance variation in conformationally constrained oligosilane tunnel junctions. J. Phys. Chem. A 113, 3876–3880 (2009).

    Article  PubMed  CAS  Google Scholar 

  22. Löfås, H., Emanuelsson, R., Ahuja, R., Grigoriev, A. & Ottosson, H. Conductance through carbosilane cage compounds: a computational investigation. J. Phys. Chem. C 117, 21692–21699 (2013).

    Article  CAS  Google Scholar 

  23. Fischer, R., Konopa, T., Ully, S., Baumgartner, J. & Marschner, C. Route Si6 revisited. J. Organomet. Chem. 685, 79–92 (2003).

    Article  CAS  Google Scholar 

  24. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221 (2003).

    Article  ADS  PubMed  CAS  Google Scholar 

  25. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  26. Reddy, P., Jang, S.-Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003).

    Article  ADS  CAS  Google Scholar 

  28. Bergfield, J. P., Solis, M. A. & Stafford, C. A. Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314–5320 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  30. Rincón-García, L., Evangeli, C., Rubio-Bollinger, G. & Agrait, N. Thermopower measurements in molecular junctions. Chem. Soc. Rev. 45, 4285–4306 (2016).

    Article  PubMed  Google Scholar 

  31. Tamblyn, I., Darancet, P., Quek, S. Y., Bonev, S. A. & Neaton, J. B. Electronic energy level alignment at metal–molecule interfaces with a GW approach. Phys. Rev. B 84, 201402 (2011).

    Article  ADS  CAS  Google Scholar 

  32. Yoshizawa, K., Tada, T. & Staykov, A. Orbital views of the electron transport in molecular devices. J. Am. Chem. Soc. 130, 9406–9413 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  ADS  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  PubMed  CAS  Google Scholar 

  36. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    Article  CAS  Google Scholar 

  37. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  ADS  CAS  Google Scholar 

  38. Larsen, A. H., Vanin, M., Mortensen, J. J., Thygesen, K. S. & Jacobsen, K. W. Localized atomic basis set in the projector augmented wave method. Phys. Rev. B 80, 195112 (2009).

    Article  ADS  CAS  Google Scholar 

  39. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

    Article  ADS  CAS  Google Scholar 

  40. Atomistix ToolKit version 2016.3 (QuantumWise A/S, 2016);

  41. Virtual NanoLab version 2016.3 (QuantumWise A/S, 2016);

  42. Markussen, T., Jin, C. & Thygesen, K. S. Quantitatively accurate calculations of conductance and thermopower of molecular junctions. Phys. Status Solidi B 250, 2394–2402 (2013).

    Article  ADS  CAS  Google Scholar 

  43. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  44. Su, T. A., Li, H., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Park, Y. S. et al. Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. Kim, T., Vázquez, H., Hybertsen, M. S. & Venkataraman, L. Conductance of molecular junctions formed with silver electrodes. Nano Lett. 13, 3358–3364 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  47. Meisner, J. S. et al. Importance of direct metal−π coupling in electronic transport through conjugated single-molecule junctions. J. Am. Chem. Soc. 134, 20440–20445 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. Li, H. et al. Silver makes better electrical contacts to thiol-terminated silanes than gold. Angew. Chem. Int. Ed. 56, 14145–14148 (2017).

    Article  ADS  CAS  Google Scholar 

Download references


G.C.S. and M.H.G. received funding from the Danish Council for Independent Research | Natural Sciences and the Carlsberg Foundation. We thank the National Science Foundation (NSF) for the support of experimental studies under grant no. CHE-1404922 (Ha.L.) and Columbia University’s Research Initiatives in Science and Engineering. Y.C., Z.S., T.L. and S.X. are sponsored by the National Natural Science Foundation of China (grant nos 21473113 and 51502173), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (no. 2013-57), the “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (14SG40), the Program of Shanghai Academic/Technology Research Leader (no. 16XD1402700), the National Natural Science Foundation of Shanghai (no. 15ZR1431100), the Ministry of Education of China (PCSIRT_16R49) and the International Joint Laboratory of Resource Chemistry (IJLRC). T.A.S. was supported by an NSF Graduate Research Fellowship under grant no. 11-44155. We thank B. Fowler for mass spectrometry characterization. Single-crystal X-ray diffraction was performed at the Shared Materials Characterization Laboratory (SMCL) at Columbia University. Use of the SMCL was made possible by funding from Columbia University.

Author information

Authors and Affiliations



M.H.G., Ha.L., T.A.S., C.N., L.V. and G.C.S. conceived the idea for the paper. M.H.G. conducted the theoretical calculations under the supervision of G.C.S. Ha.L. did the conductance, noise and thermopower measurements under the supervision of L.V. Y.C., T.A.S., Z.S, D.W.P. and T.L. synthesized and characterized the molecules under the supervision of F.N., He.L., C.N. and S.X. M.H.G., Ha.L., L.V. and G.C.S. analysed the data and wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Shengxiong Xiao, Colin Nuckolls, Latha Venkataraman or Gemma C. Solomon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The three conformations of Si222 and Si2-Si222-Si2, and their transmission data.

a, Optimized structures of the three conformations of Si222. b, c, Calculated Landauer transmission for the ortho (b) and cis (c) conformations, which are very similar to that of the anti-conformation shown in Fig. 2. dg, Transmission pathways for: (d) Si222-ortho-cut, (e) Si222-cis-cut, (f) Si222-ortho and (g) Si222-cis.

Extended Data Fig. 2 Transmission data for Si222, Si222-short (a compressed junction of Si222) and Si2-Si222-Si2 anti-conformations.

a, Transmission plot; bd, transmission pathways of (b) Si222-short, (c) Si2-Si222-Si2 and (d) Si222 calculated at 0 eV (the Fermi energy); e, Si2-Si222-Si2 calculated at –0.6 eV; f, Si222 calculated at –1.6 eV. Through-space injection dominates on one side of the molecule in Si222-short at 0 eV and a flattened transmission function around the Fermi energy is observed. This coexistence implies that through-space injection can change the slope of the transmission (and thus the thermopower), without a substantial change in the magnitude of the conductance. Si2-Si222-Si2 at −0.6 eV and Si222 at −1.6 eV both show reversed ring current direction in comparison with that calculated at 0 eV, a clear signature of destructive quantum interference.

Extended Data Fig. 3 Transmission of the partially cut versions of Si222.

a, Chemical structures of Si222-1bridge and Si222-2bridge. b, Transmission data of Si222 in anti-conformation with different number of bridges being cut. ce, Transmission pathways are shown for (c) Si222-1bridge (one bridge remains, two were cut), (d) Si222-2bridge (two bridges remain, one was cut) and (e) Si222. The transmission of the Si222-2bridge junction is almost as high as Si222-cut junction where all three bridges are cut, because the bridge where the interference signature appears is cut (d). If we instead cut the other two bridges simultaneously (c, Si222-1bridge), the ring current pathways and the antiresonance in the transmission persist.

Extended Data Fig. 4 Transmission of linear tetrasilane (Si4) with one bridging unit cut.

a, Transmission plot of Si4 and Si4-cut, where one Si(CH3)2 unit has been cut away and the bridgehead silicon atoms passivated with hydrogen atoms. b, c, Transmission pathways are shown for (b) Si4 and (c) Si4-cut. d, Transmission at the Fermi energy plotted against bridgehead silicon distance of Si4 and Si4-cut. Solid red line is a linear fit to the data of Si4-cut.

Extended Data Fig. 5 Experimental 2D conductance versus displacement histograms.

a, Si4; b, Si222; c, Si2-Si222-Si2. d, Two-dimensional histogram of normalized flicker noise power against average junction conductance for Si4 along with a 2D Gaussian fit of the data. We see almost no correlation between flicker noise power and the conductance and the noise power scales as G1.1.

Extended Data Fig. 6 Thermopower data of Si2-Si222-Si2 and Si8.

a, Chemical structures of Si8 and Si2-Si222-Si2. b, c, Two-dimensional histograms of thermoelectric current measured while Si2-Si222-Si2 junctions are held at ΔT = 0 K and 37 K, respectively. d, Histogram of the measured thermoelectric current for Si8, which has the same number of Si atoms across the molecule as Si2-Si222-Si2, with ΔT = 0 K and 27 K. Inset: Histogram of thermopower determined from the thermoelectric current for Si8 junctions. After subtracting the thermopower of Au of 2 μV K−1 (to account for the thermoelectric current between the hot substrate and the cold set-up), the average thermopower for Si8 is 35 ± 17 μV K−1, smaller than that of Si2-Si222-Si2. e, Transmission curves for Si8 junction along with Si2-Si222-Si2 junction showing different slopes at the Fermi level. f, Thermopower calculated as the slope of the transmission as a function of energy. Theory underestimates the thermopower of both Si2-Si222-Si2 and Si8 by approximately an order of magnitude. Furthermore, the energy alignment between the antiresonance and the Fermi energy is not exact because of inherent errors of DFT31,42, which results in the opposite sign of the thermopower at the Fermi energy compared to the experimental value.

Extended Data Fig. 7 Further comparison of experimental conductance of thiomethyl- and amine-terminated molecules.

a, b, Experimental conductance is plotted against calculated (a) sulfur–sulfur distance for thiomethyl-linked molecules and (b) nitrogen–nitrogen distance for amine linked molecules; dashed lines are linear fits to the data. All conductance values are determined from log-binned conductance histograms created from data taken from references and reproduced in Extended Data Fig. 814,33,43,44,45,46,47,48.

Extended Data Fig. 8 Logarithmically binned 1D conductance histograms for control molecules.

a, Molecules 9 and 10; b, molecules 12 to 15; c, amine-terminated alkanes C2 to C12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garner, M.H., Li, H., Chen, Y. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 558, 415–419 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing