Deterministic quantum state transfer and remote entanglement using microwave photons

Abstract

Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels1. A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation2. Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits3 constitute a universal quantum node4 that is capable of sending, receiving, storing and processing quantum information5,6,7,8. Our implementation is based on an all-microwave cavity-assisted Raman process9, which entangles or transfers the qubit state of a transmon-type artificial atom10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic and measurement set-up.
Fig. 2: Emission, transfer and absorption of a single photon.
Fig. 3: Quantum state transfer.
Fig. 4: Remote-entanglement generation.

References

  1. 1.

    Cirac, J. I., Ekert, A. K., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999).

    ADS  MathSciNet  Article  CAS  Google Scholar 

  2. 2.

    Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    ADS  Article  CAS  Google Scholar 

  3. 3.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    ADS  Article  PubMed  CAS  Google Scholar 

  4. 4.

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    ADS  Article  CAS  Google Scholar 

  5. 5.

    Eichler, C. et al. Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501–240505 (2012).

    ADS  Article  PubMed  MATH  CAS  Google Scholar 

  6. 6.

    Wenner, J. et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys. Rev. Lett. 112, 210501 (2014).

    ADS  Article  CAS  Google Scholar 

  7. 7.

    Johnson, B. R et al. Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663–667 (2010).

    Article  CAS  Google Scholar 

  8. 8.

    DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  9. 9.

    Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

    Google Scholar 

  10. 10.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Article  CAS  Google Scholar 

  11. 11.

    Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS  Article  PubMed  CAS  Google Scholar 

  12. 12.

    Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS  Article  PubMed  CAS  Google Scholar 

  13. 13.

    Choi, K. S., Goban, A., Papp, S. B., van Enk, S. J. & Kimble, H. J. Entanglement of spin waves among four quantum memories. Nature 468, 412–416 (2010).

    ADS  Article  PubMed  CAS  Google Scholar 

  14. 14.

    Roch, N. et al. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  15. 15.

    Slodička, L. et al. Atom-atom entanglement by single-photon detection. Phys. Rev. Lett. 110, 083603 (2013).

    ADS  Article  PubMed  CAS  Google Scholar 

  16. 16.

    Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS  Article  PubMed  CAS  Google Scholar 

  18. 18.

    Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS  Article  PubMed  CAS  Google Scholar 

  19. 19.

    Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  20. 20.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  Article  PubMed  CAS  Google Scholar 

  21. 21.

    Matsukevich, D. N. et al. Entanglement of remote atomic qubits. Phys. Rev. Lett. 96, 030405 (2006).

    ADS  Article  PubMed  CAS  Google Scholar 

  22. 22.

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  23. 23.

    Axline, C. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. https://doi.org/10.1038/s41567-018-0115-y (2018).

  24. 24.

    Campagne-Ibarcq, P. et al. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions. Phys. Rev. Lett. 120, 200501 (2018).

  25. 25.

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  Article  CAS  Google Scholar 

  26. 26.

    Reed, M. D. et al. Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl. Phys. Lett. 96, 203110 (2010).

    ADS  Article  CAS  Google Scholar 

  27. 27.

    Walter, T. et al. Rapid, high-fidelity, single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Zeytinoğlu, S. et al. Microwave-induced amplitude- and phase-tunable qubit-resonator coupling in circuit quantum electrodynamics. Phys. Rev. A 91, 043846 (2015).

    ADS  Article  CAS  Google Scholar 

  29. 29.

    Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    ADS  Article  PubMed  CAS  Google Scholar 

  30. 30.

    Magnard, P. et al. Fast and unconditional all-microwave reset of a superconducting qubit. Preprint at https://arxiv.org/abs/1801.07689 (2018).

  31. 31.

    Bozyigit, D. et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors. Nat. Phys. 7, 154–158 (2011).

    Article  CAS  Google Scholar 

  32. 32.

    van Enk, S. J., Lütkenhaus, N. & Kimble, H. J. Experimental procedures for entanglement verification. Phys. Rev. A 75, 052318 (2007).

    ADS  Article  CAS  Google Scholar 

  33. 33.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 10th edn, Ch. 9 (Cambridge Univ. Press, New York, 2011).

    Google Scholar 

  34. 34.

    Verstraete, F. & Wolf, M. M. Entanglement versus bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170401 (2002).

    ADS  Article  PubMed  CAS  Google Scholar 

  35. 35.

    Dickel, C. et al. Chip-to-chip entanglement of transmon qubits using engineered measurement fields. Phys. Rev. B 97, 064508 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Preprint at https://arxiv.org/abs/1712.07567 (2017).

  37. 37.

    Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  38. 38.

    Sete, E. A., Martinis, J. M. & Korotkov, A. N. Quantum theory of a bandpass Purcell filter for qubit readout. Phys. Rev. A 92, 012325 (2015).

    ADS  Article  CAS  Google Scholar 

  39. 39.

    Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501–060504 (2005).

    ADS  Article  PubMed  CAS  Google Scholar 

  40. 40.

    Peterer, M. J. et al. Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015).

    ADS  Article  PubMed  CAS  Google Scholar 

  41. 41.

    Motzoi, F., Gambetta, J. M., Rebentrost, P. & Wilhelm, F. K. Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  42. 42.

    Gambetta, J. M., Motzoi, F., Merkel, S. T. & Wilhelm, F. K. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A 83, 012308–012313 (2011).

    ADS  Article  Google Scholar 

  43. 43.

    Chow, J. M. et al. Randomized benchmarking and process tomography for gate errors in a solid-state qubit. Phys. Rev. Lett. 102, 090502 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  44. 44.

    Kurpiers, P., Walter, T., Magnard, P., Salathe, Y. & Wallraff, A. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures. EPJ Quant. Technol. 4, 8 (2017).

    Article  Google Scholar 

  45. 45.

    Gardiner, C. W. Driving a quantum system with the output field from another driven quantum system. Phys. Rev. Lett. 70, 2269–2272 (1993).

    ADS  Article  PubMed  CAS  Google Scholar 

  46. 46.

    Carmichael, H. J. Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70, 2273–2276 (1993).

    ADS  Article  PubMed  CAS  Google Scholar 

  47. 47.

    Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997).

    ADS  Article  Google Scholar 

  48. 48.

    Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    ADS  MathSciNet  Article  CAS  Google Scholar 

  49. 49.

    Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).

    MathSciNet  Google Scholar 

  50. 50.

    Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    ADS  Article  MATH  Google Scholar 

  51. 51.

    Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    ADS  Article  PubMed  CAS  Google Scholar 

  52. 52.

    Laurat, J., Choi, K. S., Deng, H., Chou, C. W. & Kimble, H. J. Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007).

    ADS  Article  PubMed  CAS  Google Scholar 

  53. 53.

    Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    ADS  Article  PubMed  CAS  Google Scholar 

  54. 54.

    Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008).

    ADS  Article  PubMed  CAS  Google Scholar 

  55. 55.

    Maunz, P. et al. Heralded quantum gate between remote quantum memories. Phys. Rev. Lett. 102, 250502 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  56. 56.

    Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).

    Article  CAS  Google Scholar 

  57. 57.

    Lettner, M. et al. Remote entanglement between a single atom and a Bose-Einstein condensate. Phys. Rev. Lett. 106, 210503 (2011).

    ADS  Article  PubMed  CAS  Google Scholar 

  58. 58.

    Usmani, I. et al. Heralded quantum entanglement between two crystals. Nat. Photon. 6, 234–237 (2012).

    ADS  Article  CAS  Google Scholar 

  59. 59.

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    ADS  MathSciNet  Article  PubMed  MATH  CAS  Google Scholar 

  60. 60.

    Hensen, B. et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  Article  PubMed  CAS  Google Scholar 

  61. 61.

    Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).

    Google Scholar 

  62. 62.

    Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    ADS  Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC) through the ‘Superconducting Quantum Networks’ (SuperQuNet) project, by the National Centre of Competence in Research ‘Quantum Science and Technology’ (NCCR QSIT), a research instrument of the Swiss National Science Foundation (SNSF), by ETH Zurich and NSERC, the Canada First Research Excellence Fund and the Vanier Canada Graduate Scholarships.

Author information

Affiliations

Authors

Contributions

The experiment was designed and developed by P.K., T.W., P.M. and M.P. The samples were fabricated by J.-C.B., T.W. and S.G. The experiments were performed by P.K., P.M. and T.W. The data were analysed and interpreted by P.K., P.M., B.R., A.B. and A.W. The FPGA firmware and experiment automation was implemented by J.H., Y.S., A.A., S.S., P.M. and P.K. The master-equation simulations were performed by B.R., M.P., P.M. and P.K. The manuscript was written by P.K., P.M., T.W., B.R. and A.W. All authors commented on the manuscript. The project was led by A.W.

Corresponding authors

Correspondence to P. Kurpiers or A. Wallraff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Overview of remote-entanglement experiments.

a, Entanglement generation rate Γent. b, CHSH–Bell inequality49,50 correlation S. c, Concurrence \({\mathscr{C}}\). d, Entangled state fidelity \({{\mathscr{F}}}^{{\rm{s}}}\). The experiments are grouped by physical system: atomic ensembles (‘ae’)12,21,51,52,53, trapped ions (‘ion’)15,17,54,55,56, single-atom Bose–Einstein condensate (‘sab’)57, vibrational state of diamonds (‘vs’)18, rare-Earth-doped crystals (‘rec’)58, single atoms (‘sa’)19,22, nitrogen–vacancy centres (‘nv’)20,36,59,60, superconducting circuits (‘sc’)14,23,24,35,61 or quantum dots (‘qd’)16,62. The colours indicate different implementations: probabilistic unheralded (red), probabilistic heralded (blue), guaranteeing a deterministic delivery of an entangled state at a pre-specified time (yellow) or fully deterministic (green). The plot markers indicate different schemes for realizing the remote interaction: measurement-induced (triangles), single-photon (crosses) or two-photon (squares) interference and detection, direct transfer (diamond) or direct transfer with shaped photons (circles). The lines in c are bounds34 on the concurrence \({\mathscr{C}}\) calculated from measured CHSH–Bell correlations S. The shaded column highlights this study.

Extended Data Fig. 2 Micrograph of sample and energy-level diagram.

a, False-colour micrograph of a sample of the same design co-fabricated with the one used for node A. The circuit elements are colour coded as in Fig. 1: transfer circuit (yellow), readout circuit (grey), transmon (orange) and input lines of the transmon and readout circuit (blue). The input to the transfer circuit is used as an auxiliary port to perform resonator spectroscopy in transmission. The inset shows a scanning electron microscopy (SEM) micrograph of the asymmetric SQUID with a ratio of 5:1 between the areas of the Josephson junctions used in the transmon. b, Schematic of the energy-level diagram of the coupled transmon-transfer resonator system. The numerical values of all parameters are listed in Extended Data Table 1.

Extended Data Fig. 3 a.c. Stark shift and Rabi rate of the \(\left|f,0\right\rangle \leftrightarrow \left|g,1\right\rangle \) transition.

a, b, Measurement (filled circles) of the a.c. Stark shift Δf0g1/(2π) (a) and the effective coupling \(\widetilde{g}/\left(2{\rm{\pi }}\right)\) of the \(\left|f,0\right\rangle \leftrightarrow \left|g,1\right\rangle \) transition (b) versus drive amplitude εf0g1 for sample A (blue) and B (red). The solid lines in a (b) are quadratic (linear) fits to the data30.

Extended Data Fig. 4 Qutrit single-shot readout characterization.

af, Scatter plot of the measured integrated quadrature values u and v for qutrit A (ac) and B (df) when prepared in state \(\left|g\right\rangle \) (blue; a, d), \(\left|e\right\rangle \) (red; b, e) and \(\left|f\right\rangle \) (green; c, f). We plot only the first 1,000 of the 25,000 repetitions for each state-preparation experiment. The dashed lines are the qutrit-state discrimination thresholds used to obtain the assignment probabilities (numbers, which are also listed in Extended Data Table 2).

Extended Data Fig. 5 Characterization of entangled states in a two-qutrit basis.

ac, Two-qutrit state tomography: real (a) and imaginary (b) part of the density matrix and expectation values of the Gell–Mann operators λ k (c). The ideal Bell state \(\left|{\psi }^{+}\right\rangle \) and numerical master-equation simulation are depicted as grey and red outlines, respectively. λ0 denotes the identity operation, λ1,2,3 denote the Pauli matrices \({\sigma }_{x,y,z}^{{\rm{ge}}}\) in the qubit subspace, λ4,5 correspond to \({\sigma }_{x,y}^{{\rm{gf}}}\), λ6,7 correspond to \({\sigma }_{x,y}^{{\rm{ef}}}\) and λ8 is the diagonal matrix \(\left({\sigma }_{z}^{{\rm{ge}}}+2{\sigma }_{z}^{{\rm{ef}}}\right){\rm{/}}\sqrt{3}\). The trace distance between the measurement and the simulation is 0.107.

Extended Data Table 1 Summary of device parameters for nodes A and B
Extended Data Table 2 Probabilities of identifying the prepared states (columns) as the measured states (rows) for qutrits A and B
Extended Data Table 3 Probabilities of identifying the prepared input states (columns) as the indicated output states (rows) for all possible tuples of two-qutrit basis states
Extended Data Table 4 Numerical values of the experimentally obtained process-matrix elements of the qubit state transfer
Extended Data Table 5 Numerical values of the experimentally obtained density-matrix elements of the two-qubit remote-entangled state in a two-qutrit basis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurpiers, P., Magnard, P., Walter, T. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018). https://doi.org/10.1038/s41586-018-0195-y

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.