Review Article | Published:

The global influence of localized dynamics in the Southern Ocean

Naturevolume 558pages209218 (2018) | Download Citation


The circulation of the Southern Ocean connects ocean basins, links the deep and shallow layers of the ocean, and has a strong influence on global ocean circulation, climate, biogeochemical cycles and the Antarctic Ice Sheet. Processes that act on local and regional scales, which are often mediated by the interaction of the flow with topography, are fundamental in shaping the large-scale, three-dimensional circulation of the Southern Ocean. Recent advances provide insight into the response of the Southern Ocean to future change and the implications for climate, the carbon cycle and sea-level rise.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Deacon, G. E. R. The hydrology of the Southern Ocean. Discov. Rep. 15, 1–124 (1937).

  2. 2.

    Sverdrup, H. U. On vertical circulation in the ocean due to the action of the wind with application to conditions within the Antarctic Circumpolar Current. Discov. Rep. VII, 139–170 (1933).

  3. 3.

    Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon cell. J. Phys. Oceanogr. 30, 3212–3222 (2000). This study highlights the role of the Southern Ocean in closing the global overturning circulation.

  4. 4.

    Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012). This paper provides a review of the Southern Ocean overturning circulation and its role in the Earth system.

  5. 5.

    Sloyan, B. M. & Rintoul, S. R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001).

  6. 6.

    Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

  7. 7.

    Gruber, N. et al. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23, GB1005 (2009).

  8. 8.

    Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015). This study, which is based on numerical model simulations, demonstrates the dominant contribution of the Southern Ocean to the uptake of anthropogenic heat and carbon dioxide.

  9. 9.

    Hughes, C. W. Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res. 110, C11008 (2005). This paper provides a lucid explanation of the vorticity balance in the Southern Ocean.

  10. 10.

    Anderson, D. L. T. & Gill, A. E. Spin-up of a stratified ocean with applications to upwelling. Deep Sea Res. 22, 583–596 (1975).

  11. 11.

    Rintoul, S. R., Hughes, C. & Olbers, D. in Ocean Circulation and Climate (eds Siedler, G. et al.) 271–302 (Academic Press, Cambridge, 2001).

  12. 12.

    Olbers, D., Borowski, D., Völker, C. & Wölff, J.-O. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci. 16, 439–470 (2004).

  13. 13.

    Rintoul, S. R. & Naveira Garabato, A. C. in Ocean Circulation and Climate 2nd edn (eds Siedler, G. et al.) Ch. 18 (Academic Press, Cambridge, 2013). This review of Southern Ocean dynamics provides additional detail on some of the processes highlighted here.

  14. 14.

    Munk, W. H. & Palmén, E. Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3, 53–55 (1951).

  15. 15.

    Johnson, G. C. & Bryden, H. On the size of the Antarctic Circumpolar Current. Deep Sea Res. Part A 36, 39–53 (1989).

  16. 16.

    Hogg, A. McC. An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett. 37, L23601 (2010).

  17. 17.

    Marshall, J. & Radko, T. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33, 2341–2354 (2003).

  18. 18.

    Straub, D. N. On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 23, 776–782 (1993).

  19. 19.

    Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. Response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1, 864–869 (2008).

  20. 20.

    Hallberg, R. & Gnanadesikan, A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr. 36, 2232–2252 (2006).

  21. 21.

    Farneti, R., Delworth, T. L., Rosati, A. J., Griffies, S. M. & Zeng, F. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr. 40, 1539–1557 (2010).

  22. 22.

    Dufour, C. O. et al. Standing and transient eddies in the response of the Southern Ocean meridional overturning to the Southern Annular Mode. J. Clim. 25, 6958–6974 (2012).

  23. 23.

    Morrison, A. K. & Hogg, A. McC. On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr. 43, 140–148 (2013).

  24. 24.

    Chelton, D. B., Schlax, M. G., Samelson, R. M. & deSzoeke, R. A. Global observations of large ocean eddies. Geophys. Res. Lett. 34, L15606 (2007).

  25. 25.

    Sokolov, S. & Rintoul, S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. Oceans 112, C07030 (2007).

  26. 26.

    Masich, J., Chereskin, T. K. & Mazloff, M. Topographic form stress in the Southern Ocean state estimate. J. Geophys. Res. 120, 7919–7933 (2015).

  27. 27.

    Firing, Y. l., Chereskin, T. K., Watts, D. R. & Mazloff, M. R. Bottom pressure torque and the vorticity balance from observations in Drake Passage. J. Geophys. Res. Oceans 121, 4282–4302 (2016).

  28. 28.

    Williams, R. G., Wilson, C. & Hughes, C. W. Ocean and atmosphere storm tracks: the role of eddy vorticity forcing. J. Phys. Oceanogr. 37, 2267–2289 (2007).

  29. 29.

    Thompson, A. F. & Sallée, J. B. Jets and topography: jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 42, 956–972 (2012).

  30. 30.

    Smith, I. J., Stevens, D. P., Heywood, K. J. & Meredith, M. P. The flow of the Antarctic Circumpolar Current over the North Scotia Ridge. Deep Sea Res. Part I 57, 14–28 (2010).

  31. 31.

    Rintoul, S. R. et al. Antarctic Circumpolar Current transport and barotropic transition at Macquarie Ridge. Geophys. Res. Lett. 41, 7254–7261 (2014).

  32. 32.

    Thompson, A. F. & Naveira Garabato, A. C. Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr. 44, 1811–1828 (2014). This study shows how changes in the path of the Antarctic Circumpolar Current (‘flexing’ of meanders) can give rise to eddy-mean flow and flow–topography interactions that balance changes in forcing.

  33. 33.

    Dufour, C. O. et al. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 45, 3057–3081 (2015).

  34. 34.

    Naveira Garabato, A. C., Ferrari, R. & Polzin, K. L. Eddy stirring in the Southern Ocean. J. Geophys. Res. 116, C09019 (2011). This paper provides a comprehensive examination of along-isopycnal stirring in the Southern Ocean by eddies.

  35. 35.

    Chereskin, T. K. et al. Strong bottom currents and cyclogenesis in Drake Passage. Geophys. Res. Lett. 36, L23602 (2009).

  36. 36.

    Döös, K., Nycander, J. & Coward, A. C. Lagrangian decomposition of the Deacon Cell. J. Geophys. Res. 113, C07028 (2008).

  37. 37.

    Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017); corrigendum 9, 209 (2018).

  38. 38.

    Tamsitt, V., Abernathey, R. P., Mazloff, M. R., Wang, J. & Talley, L. D. Transformation of deep water masses along Lagrangian upwelling pathways in the Southern Ocean. J. Geophys. Res. Oceans 123, 1994–2017 (2018).

  39. 39.

    Sallée, J. B., Rintoul, S. R. & Wijffels, S. E. Southern ocean thermocline ventilation. J. Phys. Oceanogr. 40, 509–529 (2010).

  40. 40.

    Sallée, J. B., Matear, R., Rintoul, S. R. & Lenton, A. Surface to interior pathways of anthropogenic CO2 in the southern hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).

  41. 41.

    Langlais, C. E. et al. Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Sci. Rep. 7, 17076 (2017).

  42. 42.

    Tulloch, R. et al. Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr. 44, 2593–2616 (2014).

  43. 43.

    Ferrari, R. & Nikurashin, M. Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr. 40, 1501–1519 (2010). This study explains how the strong jets of the Antarctic Circumpolar Current suppress eddy stirring across the current.

  44. 44.

    Garabato Naveira, A. C., Stevens, D. P., Watson, A. J. & Roether, W. Short-circuiting of the oceanic overturning circulation in the Antarctic Circumpolar Current. Nature 447, 194–197 (2007).

  45. 45.

    Ledwell, J. R., St. Laurent, L. C., Girton, J. B. & Toole, J. M. Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 41, 241–246 (2011).

  46. 46.

    Naveira Garabato, A. C., Polzin, K. L., Ferrari, R., Zika, J. D. & Forryan, A. A microscale view of mixing and overturning across the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 233–254 (2016).

  47. 47.

    Waterman, S. N., Naveira Garabato, A. C. & Polzin, K. L. Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 43, 259–282 (2013).

  48. 48.

    Sheen, K. L. et al. Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans 118, 2774–2792 (2013).

  49. 49.

    Nikurashin, M. & Ferrari, R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the Southern Ocean. J. Phys. Oceanogr. 40, 2025–2042 (2010).

  50. 50.

    Laurent, L. St. et al. Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr. 42, 2143–2152 (2012).

  51. 51.

    Watson, A. J. et al. Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature 501, 408–411 (2013). Using observations of the spreading of a tracer released in the Southern Ocean, the authors show that diapycnal mixing is rapid where the Antarctic Circumpolar Current interacts with rough topography.

  52. 52.

    Nikurashin, M. & Ferrari, R. Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40, 3133–3137 (2013).

  53. 53.

    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: schematics and transports. Oceanography 26, 80–97 (2013).

  54. 54.

    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004); corrigendum 479, 556 (2011).

  55. 55.

    Marinov, I., Gnanadesikan, A., Toggweiler, J. R. & Sarmiento, J. L. The Southern Ocean biogeochemical divide. Nature 441, 964–967 (2006).

  56. 56.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

  57. 57.

    Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, GB2002 (2006).

  58. 58.

    Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013).

  59. 59.

    Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

  60. 60.

    Roemmich, D. J. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change. 5, 240–245 (2015).

  61. 61.

    Gao, L., Rintoul, S. R. & Yu, W. Recent wind-driven changes in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Clim. Change. 8, 58–63 (2018).

  62. 62.

    Le Quéré, C. et al. Saturation of the southern ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

  63. 63.

    Lovenduski, N. S., Gruber, N. & Doney, S. C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22, GB3016 (2008).

  64. 64.

    Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

  65. 65.

    DeVries, T., Holzer, M. & Primeau, F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542, 215–218 (2017).

  66. 66.

    Lumpkin, R. & Speer, K. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550–2562 (2007).

  67. 67.

    Abernathey, R. P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).

  68. 68.

    Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537, 89–92 (2016). This study highlights the contribution of fresh-water transport by sea ice to the buoyancy budget and water-mass transformations that are central to the Southern Ocean overturning circulation.

  69. 69.

    Pellichero, V., Sallée, J.-B., Schmidtko, S., Roquet, F. & Charrassin, J.-B. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing. J. Geophys. Res. Oceans 122, 1608–1633 (2017).

  70. 70.

    Pellichero, V., Sallée, J.-B., Chapman, C. C. & Downes, S. M. The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun. 9, 1789 (2018).

  71. 71.

    Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).

  72. 72.

    Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change 143, 228–250 (2016).

  73. 73.

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

  74. 74.

    Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

  75. 75.

    Silvano, A. et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv. 4, eaap9467 (2018).

  76. 76.

    Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

  77. 77.

    Shepherd, A., Fricker, H. A. & Farrell, S. L. Trends and connections across the Antarctic cryosphere. Nature 558, (2018).

  78. 78.

    Dupont, T. K. & Alley, R. B. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett. 32, L04503 (2005).

  79. 79.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

  80. 80.

    Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

  81. 81.

    Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

  82. 82.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

  83. 83.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

  84. 84.

    Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016).

  85. 85.

    Silvano, A., Rintoul, S. R., Peña-Molino, B. & Williams, G. D. Distribution of water masses and meltwater on the continental shelf near the Totten and Moscow University ice shelves. J. Geophys. Res. Oceans 122, 2050–2068 (2017).

  86. 86.

    Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).

  87. 87.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

  88. 88.

    Spence, P. et al. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Clim. Change. 7, 595–603 (2017).

  89. 89.

    Stewart, A. L. & Thompson, A. F. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 42, 432–440 (2015).

  90. 90.

    Dinniman, M. S., Klinck, J. M. & Smith, W. O. Jr. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. Part II 58, 1508–1523 (2011).

  91. 91.

    Khazendar, A. et al. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat. Commun. 4, 2857 (2013).

  92. 92.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

  93. 93.

    Pauling, A. G., Smith, I. J., Langhorne, P. J. & Bitz, C. M. Time-dependent freshwater input from ice shelves: impacts on Antarctic sea ice and the Southern Ocean in an Earth system model. Geophys. Res. Lett. 44, 10454–10461 (2017).

  94. 94.

    Hellmer, H. H. Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties. Geophys. Res. Lett. 31, L10307 (2004).

  95. 95.

    Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

  96. 96.

    Meijers, A. J. S., Bindoff, N. L. & Rintoul, S. R. Frontal movements and property fluxes: contributions to heat and freshwater trends in the Southern Ocean. J. Geophys. Res. Oceans 116, C08024 (2011).

  97. 97.

    Hogg, A. McC. et al. Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans 120, 257–267 (2015).

  98. 98.

    Waugh, D. W., Primeau, F., DeVries, T. & Holzer, M. Recent changes in the ventilation of the southern oceans. Science 339, 568–570 (2012).

  99. 99.

    Jacobs, S. S. & Giulivi, C. F. Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J. Clim. 23, 4508–4524 (2010).

  100. 100.

    Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

  101. 101.

    Purkey, S. G. & Johnson, G. C. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Clim. 25, 5830–5844 (2012).

  102. 102.

    Purkey, S. G. & Johnson, G. C. Antarctic Bottom Water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

  103. 103.

    van Wijk, E. M. & Rintoul, S. R. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys. Res. Lett. 41, 1657–1664 (2014).

  104. 104.

    Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

  105. 105.

    Swart, N. C. & Fyfe, J. C. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett. 39, L16711 (2012).

  106. 106.

    Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).

  107. 107.

    Meredith, M. P., Naveira Garabato, A. C., Hogg, A. McC. & Farneti, R. Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Clim. 25, 99–110 (2012).

  108. 108.

    Morrison, A. K., Griffies, S. M., Winton, M., Anderson, W. G. & Sarmiento, J. L. Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Clim. 29, 2059–2075 (2016).

  109. 109.

    Ito, T. et al. Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophys. Res. Lett. 42, 4516–4522 (2015).

  110. 110.

    Patara, L., Böning, C. W. B. & Biastoch, A. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys. Res. Lett. 43, 4517–4523 (2016).

  111. 111.

    Rintoul, S. R. Southern Ocean currents and climate. Pap. Proc. R. Soc. Tasman. 133, 41–50 (2000).

Download references


A. Silvano, A. Foppert, A. Lenton, M. Nikurashin and E. van Wijk provided comments on the paper. M. Bessel and G. Wells prepared the original version of Fig. 1b. This work is supported in part by the Australian Government Cooperative Research Centre (CRC) programme through the Antarctic Climate and Ecosystems CRC, by the National Environmental Science Program, by the Centre for Southern Hemisphere Oceans Research, a partnership between CSIRO and the Qingdao National Laboratory for Marine Science and Technology, and by the Tinker-Muse Prize for Science and Policy in Antarctica.

Reviewer information

Nature thanks R. Ferrari, N. Gruber and K. Speer for their contribution to the peer review of this work.

Author information


  1. CSIRO Oceans and Atmosphere, Antarctic Climate and Ecosystems Cooperative Research Centre, Centre for Southern Hemisphere Ocean Research, Hobart, Tasmania, Australia

    • Stephen R. Rintoul


  1. Search for Stephen R. Rintoul in:

Competing interests

The author declares no competing interests.

Corresponding author

Correspondence to Stephen R. Rintoul.

About this article

Publication history




Issue Date


Further reading

  • Critical Southern Ocean climate model biases traced to atmospheric model cloud errors

    • Patrick Hyder
    • , John M. Edwards
    • , Richard P. Allan
    • , Helene T. Hewitt
    • , Thomas J. Bracegirdle
    • , Jonathan M. Gregory
    • , Richard A. Wood
    • , Andrew J. S. Meijers
    • , Jane Mulcahy
    • , Paul Field
    • , Kalli Furtado
    • , Alejandro Bodas-Salcedo
    • , Keith D. Williams
    • , Dan Copsey
    • , Simon A. Josey
    • , Chunlei Liu
    • , Chris D. Roberts
    • , Claudio Sanchez
    • , Jeff Ridley
    • , Livia Thorpe
    • , Steven C. Hardiman
    • , Michael Mayer
    • , David I. Berry
    •  & Stephen E. Belcher

    Nature Communications (2018)


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.