Perspective | Published:

The many possible climates from the Paris Agreement’s aim of 1.5 °C warming

Abstract

The United Nations’ Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time. Here we show that trajectories towards a ‘1.5 °C warmer world’ may result in vastly different outcomes at regional scales, owing to variations in the pace and location of climate change and their interactions with society’s mitigation, adaptation and vulnerabilities to climate change. Pursuing policies that are considered to be consistent with the 1.5 °C aim will not completely remove the risk of global temperatures being much higher or of some regional extremes reaching dangerous levels for ecosystems and societies over the coming decades.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (UNFCCC, 2015).

  2. 2.

    UNFCCC. Report on the Structured Expert Dialogue on the 2013–2015 Review http://unfccc.int/resource/docs/2015/sb/eng/inf01.pdf (UNFCCC, 2015).This document prepared in advance of the Paris Agreement provides the underlying rationale for setting changes in global temperature as climate targets.

  3. 3.

    Intergovernmental Panel on Climate Change (IPCC) in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 3–29 (Cambridge Univ. Press, Cambridge, 2013).

  4. 4.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016). This article highlights the large regional spread in climate model responses associated with given global temperature levels for specific regions and variables.

  5. 5.

    Rogelj, J., Schleussner, C.-F. & Hare, W. Getting it right matters—temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–10665 (2017).

  6. 6.

    Cowtan, K. & Way, R.G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Met. Soc. 140, 1935–1944 (2014).

  7. 7.

    Richardson, M., Cowtan, K., Hawkins, E. & Stolpe, M. B. Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Chang. 6, 931–935 (2016).

  8. 8.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

  9. 9.

    LoPresti, A. et al. Rate and velocity of climate change caused by cumulative carbon emissions. Environ. Res. Lett. 10, 095001 (2015).

  10. 10.

    Bowerman, N. H. A., Frame, D. J., Huntingford, C., Lowe, J. A. & Allen, M. R. Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Phil. Trans. R. Soc. A 369, 45–66 (2011).

  11. 11.

    Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 271–359 (Cambridge Univ. Press, Cambridge, 2014).

  12. 12.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Chang. 5, 519–527 (2015).

  13. 13.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 6, 827–835 (2016).This article provides a discussion of the Paris Agreement from both scientific and policy perspectives.

  14. 14.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 413–510 (Cambridge Univ. Press, Cambridge, 2014).This chapter provides an overview of the scenarios considered compatible with limiting warming to 1.5 °C or 2 °C at the time of the IPCC AR5 report.

  15. 15.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5°C. Nature Clim. Chang. 8, 325–332 (2018).This article provides an overview on 1.5 °C scenarios from multiple models and under a wide range of socio-economic futures, revealing overall consistent results with previous publications 12,14 (see Box 1 and Supplementary Information).

  16. 16.

    Haustein, K. et al. A real-time Global Warming Index. Sci. Rep. 7, 15417 (2017).

  17. 17.

    Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2, 429–432 (2012).

  18. 18.

    Adger, W. N. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 755–791 (Cambridge Univ. Press, Cambridge, 2014).

  19. 19.

    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

  20. 20.

    Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

  21. 21.

    Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

  22. 22.

    Wang, Z. et al. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming. Sci. Rep. 7, 46432 (2017).

  23. 23.

    Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

  24. 24.

    Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2, 775–779 (2012).

  25. 25.

    van Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim. Change 109, 95–116 (2011).

  26. 26.

    Hirsch, A. L., Wilhelm, M., Davin, E. L., Thiery, W. & Seneviratne, S. I. Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos. 122, 2269–2288 (2017).

  27. 27.

    Hirsch, A. L. et al. Biogeophysical impacts of land-use change on climate extremes in low-emissions scenarios: results from HAPPI-Land. Earth’s Future 6, 396–409 (2018).

  28. 28.

    Seneviratne, S. I. et al. Climate extremes, land-climate feedbacks, and land use forcing at 1.5°C. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0450 (2018).

  29. 29.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6, 42–50 (2016).

  30. 30.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Clim. Chang. 8, 151–155 (2018).

  31. 31.

    Boysen, L. R. et al. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 5, 463–474 (2017).

  32. 32.

    Obersteiner, M. et al. How to spend a dwindling greenhouse gas budget. Nat. Clim. Chang. 8, 7–10 (2018).

  33. 33.

    Van Vuuren, D. P. et al. Alternative pathways to the 1.5°C target reduce the need for negative emission technologies. Nat. Clim. Chang. 8, 391–397 (2018).

  34. 34.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

  35. 35.

    Matthews, H. D. et al. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3, 69–77 (2017).

  36. 36.

    Goodwin, P. et al. Pathways to 1.5° C and 2° C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

  37. 37.

    Wartenburger, R. et al. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. 10, 3609–3634 (2017). This article is an extension of ref. 4, providing changes in a range of regional extremes as a function of global temperature changes based on simulations assessed in the IPCC AR5 72.

  38. 38.

    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).

  39. 39.

    McDermott-Long, O. et al. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? J. Anim. Ecol. 86, 108–116 (2017).

  40. 40.

    AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).

  41. 41.

    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

  42. 42.

    Beckage, B. et al. Linking models of human behaviour and climate alters projected climate change. Nature Clim. Chang. 8, 79–84 (2018).

  43. 43.

    Jenkins, S., Millar, R. J., Leach, N. & Allen, M. R. Framing climate goals in terms of cumulative CO2-forcing-equivalent emissions. Geophys. Res. Lett. 45, 2795–2804 (2018).

  44. 44.

    Fuglestvedt, J. et al. Implications of possible interpretations of “greenhouse gas balance” in the Paris Agreement. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0445 (2018).

  45. 45.

    Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus. Nature 545, 41–47 (2017).

  46. 46.

    Smith, K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nature Clim. Chang. 6, 306–310 (2016).

  47. 47.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

  48. 48.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 6, 360–369 (2016).

  49. 49.

    Marzeion, B., Kaser, G., Maussion, F. & Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nature Clim. Chang. 8, 305–308 (2018).

  50. 50.

    Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nature Clim. Chang. 7, 568–572 (2017).

  51. 51.

    Boucher, O., Lowe, J. A. & Jones, C. D. Implications of delayed actions in addressing carbon dioxide emission reduction in the context of geo-engineering. Clim. Change 92, 261–273 (2009).

  52. 52.

    Keith, D. W. & MacMartin, D. G. A temporary, moderate and responsive scenario for solar geoengineering. Nature Clim. Chang. 5, 201–206 (2015). (2015).

  53. 53.

    Tilmes, S., Sanderson, B. M. & O’Neill, B. C. Climate impacts of geoengineering in a delayed mitigation scenario. Geophys. Res. Lett. 43, 8222–8229 (2016).

  54. 54.

    Ferraro, A. J. & Griffiths, H. G. Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble. Environ. Res. Lett. 11, 34012 (2016).

  55. 55.

    Davis, N. A., Seidel, D. J., Birner, T., Davis, S. M. & Tilmes, S. Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations. Atmos. Chem. Phys. 16, 10083–10095 (2016).

  56. 56.

    Lo, Y. T. E., Charlton-Perez, A. J., Lott, F. C. & Highwood, E. J. Detecting sulphate aerosol geoengineering with different methods. Sci. Rep. 6, 39169 (2016).

  57. 57.

    Muri, H., Kristjánsson, J. E., Storelvmo, T. & Pfeffer, M. A. The climatic effects of modifying cirrus clouds in a climate engineering framework. J. Geophys. Res. 119, 4174–4191 (2014).

  58. 58.

    Trisos, C. H. et al. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2, 475–482 (2018).

  59. 59.

    O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

  60. 60.

    Byers, E. A. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).

  61. 61.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

  62. 62.

    Muratori, M., Calvin, K., Wise, M., Kyle, P. & Edmonds, J. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environ. Res. Lett. 11, 95004 (2016).

  63. 63.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

  64. 64.

    Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

  65. 65.

    Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

  66. 66.

    Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

  67. 67.

    Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

  68. 68.

    Denton, F. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1101–1131 (Cambridge Univ. Press, Cambridge, 2014).

  69. 69.

    Fleurbaey, M. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 283–350 (Cambridge Univ. Press, Cambridge, 2014).

  70. 70.

    O’Brien, K. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) 437–486 (Cambridge Univ. Press, Cambridge, 2012).

  71. 71.

    Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

  72. 72.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1–1535 (Cambridge Univ. Press, Cambridge, 2013).

  73. 73.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

  74. 74.

    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

Download references

Acknowledgements

S.I.S. and R.W. acknowledge the European Research Council (ERC) ‘DROUGHT-HEAT’ project funded by the European Community’s Seventh Framework Programme (grant agreement FP7-IDEAS-ERC-617518). J.R. acknowledges the Oxford Martin School Visiting Fellowship programme for support. R.S. acknowledges the European Union’s H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach” (grant agreement H2020-641816). O.H.G. acknowledges support of the Australia Research Council Laureate program. This work contributes to the World Climate Research Programme (WCRP) Grand Challenge on Extremes. We acknowledge the WCRP Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Reviewer information

Nature thanks S. Davis, K. Tachiiri and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

S.I.S. coordinated the design and writing of the article, with contributions from all co-authors. J.R. provided the emissions scenario data processed in Table 1. R.S. computed the scenario summary statistics of Table 1. R.W. computed the regional projections statistics of Table 1, as well as Figs. 24. S.I.S. prepared Fig. 1, with support from P.T. and J.R. J.R., R.S., M.A., M.C. and R.M. co-designed the analyses of emissions scenarios. K.L.E., N.E., O.H.G., A.J.P., C.F.S., P.T. and R.F.W. provided assessments on physical, ecosystem and human impacts. S.I.S. drafted the first version of the manuscript, with inputs from J.R., R.S. and M.A. All authors contributed to and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Sonia I. Seneviratne.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Tables 1-3, Supplementary Figures 1-3 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

  • Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces

    • Dorna Esrafilzadeh
    • , Ali Zavabeti
    • , Rouhollah Jalili
    • , Paul Atkin
    • , Jaecheol Choi
    • , Benjamin J. Carey
    • , Robert Brkljača
    • , Anthony P. O’Mullane
    • , Michael D. Dickey
    • , David L. Officer
    • , Douglas R. MacFarlane
    • , Torben Daeneke
    •  & Kourosh Kalantar-Zadeh

    Nature Communications (2019)

  • Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios

    • Ana Maria Vicedo-Cabrera
    • , Yuming Guo
    • , Francesco Sera
    • , Veronika Huber
    • , Carl-Friedrich Schleussner
    • , Dann Mitchell
    • , Shilu Tong
    • , Micheline de Sousa Zanotti Staglior Coelho
    • , Paulo Hilario Nascimento Saldiva
    • , Eric Lavigne
    • , Patricia Matus Correa
    • , Nicolas Valdes Ortega
    • , Haidong Kan
    • , Samuel Osorio
    • , Jan Kyselý
    • , Aleš Urban
    • , Jouni J. K. Jaakkola
    • , Niilo R. I. Ryti
    • , Mathilde Pascal
    • , Patrick G. Goodman
    • , Ariana Zeka
    • , Paola Michelozzi
    • , Matteo Scortichini
    • , Masahiro Hashizume
    • , Yasushi Honda
    • , Magali Hurtado-Diaz
    • , Julio Cruz
    • , Xerxes Seposo
    • , Ho Kim
    • , Aurelio Tobias
    • , Carmen Íñiguez
    • , Bertil Forsberg
    • , Daniel Oudin Åström
    • , Martina S. Ragettli
    • , Martin Röösli
    • , Yue Leon Guo
    • , Chang-fu Wu
    • , Antonella Zanobetti
    • , Joel Schwartz
    • , Michelle L. Bell
    • , Tran Ngoc Dang
    • , Dung Do Van
    • , Clare Heaviside
    • , Sotiris Vardoulakis
    • , Shakoor Hajat
    • , Andy Haines
    • , Ben Armstrong
    • , Kristie L. Ebi
    •  & Antonio Gasparrini

    Climatic Change (2018)

Fig. 1: Temporal and spatial dimensions of 1.5 °C warmer worlds.
Fig. 2: Possible outcomes with respect to global temperature and regional climate anomalies from typical scenarios compatible with 1.5 °C warming and 2 °C warming at peak warming.
Fig. 3: Possible outcomes with respect to global temperature and regional climate anomalies from typical scenarios compatible with 1.5 °C warming and 2 °C warming in 2100.
Fig. 4: The stochastic noise and model-based uncertainty of realized climate at 1.5 °C.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.