Abstract
The United Nations’ Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time. Here we show that trajectories towards a ‘1.5 °C warmer world’ may result in vastly different outcomes at regional scales, owing to variations in the pace and location of climate change and their interactions with society’s mitigation, adaptation and vulnerabilities to climate change. Pursuing policies that are considered to be consistent with the 1.5 °C aim will not completely remove the risk of global temperatures being much higher or of some regional extremes reaching dangerous levels for ecosystems and societies over the coming decades.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Threats of global warming to the world’s freshwater fishes
Nature Communications Open Access 15 March 2021
-
Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target
Communications Earth & Environment Open Access 09 February 2021
-
Translating a Global Emission-Reduction Framework for Subnational Climate Action: A Case Study from the State of Georgia
Environmental Management Open Access 15 January 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (UNFCCC, 2015).
UNFCCC. Report on the Structured Expert Dialogue on the 2013–2015 Review http://unfccc.int/resource/docs/2015/sb/eng/inf01.pdf (UNFCCC, 2015).This document prepared in advance of the Paris Agreement provides the underlying rationale for setting changes in global temperature as climate targets.
Intergovernmental Panel on Climate Change (IPCC) in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 3–29 (Cambridge Univ. Press, Cambridge, 2013).
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016). This article highlights the large regional spread in climate model responses associated with given global temperature levels for specific regions and variables.
Rogelj, J., Schleussner, C.-F. & Hare, W. Getting it right matters—temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–10665 (2017).
Cowtan, K. & Way, R.G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Met. Soc. 140, 1935–1944 (2014).
Richardson, M., Cowtan, K., Hawkins, E. & Stolpe, M. B. Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Chang. 6, 931–935 (2016).
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
LoPresti, A. et al. Rate and velocity of climate change caused by cumulative carbon emissions. Environ. Res. Lett. 10, 095001 (2015).
Bowerman, N. H. A., Frame, D. J., Huntingford, C., Lowe, J. A. & Allen, M. R. Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Phil. Trans. R. Soc. A 369, 45–66 (2011).
Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 271–359 (Cambridge Univ. Press, Cambridge, 2014).
Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Chang. 5, 519–527 (2015).
Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 6, 827–835 (2016).This article provides a discussion of the Paris Agreement from both scientific and policy perspectives.
Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 413–510 (Cambridge Univ. Press, Cambridge, 2014).This chapter provides an overview of the scenarios considered compatible with limiting warming to 1.5 °C or 2 °C at the time of the IPCC AR5 report.
Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5°C. Nature Clim. Chang. 8, 325–332 (2018).This article provides an overview on 1.5 °C scenarios from multiple models and under a wide range of socio-economic futures, revealing overall consistent results with previous publications 12,14 (see Box 1 and Supplementary Information).
Haustein, K. et al. A real-time Global Warming Index. Sci. Rep. 7, 15417 (2017).
Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2, 429–432 (2012).
Adger, W. N. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 755–791 (Cambridge Univ. Press, Cambridge, 2014).
Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).
Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).
Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).
Wang, Z. et al. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming. Sci. Rep. 7, 46432 (2017).
Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).
Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2, 775–779 (2012).
van Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim. Change 109, 95–116 (2011).
Hirsch, A. L., Wilhelm, M., Davin, E. L., Thiery, W. & Seneviratne, S. I. Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos. 122, 2269–2288 (2017).
Hirsch, A. L. et al. Biogeophysical impacts of land-use change on climate extremes in low-emissions scenarios: results from HAPPI-Land. Earth’s Future 6, 396–409 (2018).
Seneviratne, S. I. et al. Climate extremes, land-climate feedbacks, and land use forcing at 1.5°C. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0450 (2018).
Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6, 42–50 (2016).
Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Clim. Chang. 8, 151–155 (2018).
Boysen, L. R. et al. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 5, 463–474 (2017).
Obersteiner, M. et al. How to spend a dwindling greenhouse gas budget. Nat. Clim. Chang. 8, 7–10 (2018).
Van Vuuren, D. P. et al. Alternative pathways to the 1.5°C target reduce the need for negative emission technologies. Nat. Clim. Chang. 8, 391–397 (2018).
Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).
Matthews, H. D. et al. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3, 69–77 (2017).
Goodwin, P. et al. Pathways to 1.5° C and 2° C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).
Wartenburger, R. et al. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. 10, 3609–3634 (2017). This article is an extension of ref. 4, providing changes in a range of regional extremes as a function of global temperature changes based on simulations assessed in the IPCC AR5 72.
Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).
McDermott-Long, O. et al. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? J. Anim. Ecol. 86, 108–116 (2017).
AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).
Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).
Beckage, B. et al. Linking models of human behaviour and climate alters projected climate change. Nature Clim. Chang. 8, 79–84 (2018).
Jenkins, S., Millar, R. J., Leach, N. & Allen, M. R. Framing climate goals in terms of cumulative CO2-forcing-equivalent emissions. Geophys. Res. Lett. 45, 2795–2804 (2018).
Fuglestvedt, J. et al. Implications of possible interpretations of “greenhouse gas balance” in the Paris Agreement. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0445 (2018).
Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus. Nature 545, 41–47 (2017).
Smith, K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nature Clim. Chang. 6, 306–310 (2016).
Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 6, 360–369 (2016).
Marzeion, B., Kaser, G., Maussion, F. & Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nature Clim. Chang. 8, 305–308 (2018).
Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nature Clim. Chang. 7, 568–572 (2017).
Boucher, O., Lowe, J. A. & Jones, C. D. Implications of delayed actions in addressing carbon dioxide emission reduction in the context of geo-engineering. Clim. Change 92, 261–273 (2009).
Keith, D. W. & MacMartin, D. G. A temporary, moderate and responsive scenario for solar geoengineering. Nature Clim. Chang. 5, 201–206 (2015). (2015).
Tilmes, S., Sanderson, B. M. & O’Neill, B. C. Climate impacts of geoengineering in a delayed mitigation scenario. Geophys. Res. Lett. 43, 8222–8229 (2016).
Ferraro, A. J. & Griffiths, H. G. Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble. Environ. Res. Lett. 11, 34012 (2016).
Davis, N. A., Seidel, D. J., Birner, T., Davis, S. M. & Tilmes, S. Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations. Atmos. Chem. Phys. 16, 10083–10095 (2016).
Lo, Y. T. E., Charlton-Perez, A. J., Lott, F. C. & Highwood, E. J. Detecting sulphate aerosol geoengineering with different methods. Sci. Rep. 6, 39169 (2016).
Muri, H., Kristjánsson, J. E., Storelvmo, T. & Pfeffer, M. A. The climatic effects of modifying cirrus clouds in a climate engineering framework. J. Geophys. Res. 119, 4174–4191 (2014).
Trisos, C. H. et al. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2, 475–482 (2018).
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).
Byers, E. A. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Muratori, M., Calvin, K., Wise, M., Kyle, P. & Edmonds, J. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environ. Res. Lett. 11, 95004 (2016).
O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).
Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).
Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).
Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).
Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).
Denton, F. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1101–1131 (Cambridge Univ. Press, Cambridge, 2014).
Fleurbaey, M. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 283–350 (Cambridge Univ. Press, Cambridge, 2014).
O’Brien, K. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) 437–486 (Cambridge Univ. Press, Cambridge, 2012).
Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1–1535 (Cambridge Univ. Press, Cambridge, 2013).
Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).
Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).
Acknowledgements
S.I.S. and R.W. acknowledge the European Research Council (ERC) ‘DROUGHT-HEAT’ project funded by the European Community’s Seventh Framework Programme (grant agreement FP7-IDEAS-ERC-617518). J.R. acknowledges the Oxford Martin School Visiting Fellowship programme for support. R.S. acknowledges the European Union’s H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach” (grant agreement H2020-641816). O.H.G. acknowledges support of the Australia Research Council Laureate program. This work contributes to the World Climate Research Programme (WCRP) Grand Challenge on Extremes. We acknowledge the WCRP Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
Reviewer information
Nature thanks S. Davis, K. Tachiiri and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
S.I.S. coordinated the design and writing of the article, with contributions from all co-authors. J.R. provided the emissions scenario data processed in Table 1. R.S. computed the scenario summary statistics of Table 1. R.W. computed the regional projections statistics of Table 1, as well as Figs. 2–4. S.I.S. prepared Fig. 1, with support from P.T. and J.R. J.R., R.S., M.A., M.C. and R.M. co-designed the analyses of emissions scenarios. K.L.E., N.E., O.H.G., A.J.P., C.F.S., P.T. and R.F.W. provided assessments on physical, ecosystem and human impacts. S.I.S. drafted the first version of the manuscript, with inputs from J.R., R.S. and M.A. All authors contributed to and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains Supplementary Text, Supplementary Tables 1-3, Supplementary Figures 1-3 and Supplementary References
Rights and permissions
About this article
Cite this article
Seneviratne, S.I., Rogelj, J., Séférian, R. et al. The many possible climates from the Paris Agreement’s aim of 1.5 °C warming. Nature 558, 41–49 (2018). https://doi.org/10.1038/s41586-018-0181-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-018-0181-4
This article is cited by
-
A generalizable strategy based on the rule of “like dissolves like” to construct porous liquids with low viscosity for CO2 capture
Nano Research (2023)
-
Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target
Communications Earth & Environment (2021)
-
Threats of global warming to the world’s freshwater fishes
Nature Communications (2021)
-
Translating a Global Emission-Reduction Framework for Subnational Climate Action: A Case Study from the State of Georgia
Environmental Management (2021)
-
Modelling of Temperature-Attributable Mortality among the Elderly in Lisbon Metropolitan Area, Portugal: A Contribution to Local Strategy for Effective Prevention Plans
Journal of Urban Health (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.