Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The many possible climates from the Paris Agreement’s aim of 1.5 °C warming

Abstract

The United Nations’ Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time. Here we show that trajectories towards a ‘1.5 °C warmer world’ may result in vastly different outcomes at regional scales, owing to variations in the pace and location of climate change and their interactions with society’s mitigation, adaptation and vulnerabilities to climate change. Pursuing policies that are considered to be consistent with the 1.5 °C aim will not completely remove the risk of global temperatures being much higher or of some regional extremes reaching dangerous levels for ecosystems and societies over the coming decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Temporal and spatial dimensions of 1.5 °C warmer worlds.
Fig. 2: Possible outcomes with respect to global temperature and regional climate anomalies from typical scenarios compatible with 1.5 °C warming and 2 °C warming at peak warming.
Fig. 3: Possible outcomes with respect to global temperature and regional climate anomalies from typical scenarios compatible with 1.5 °C warming and 2 °C warming in 2100.
Fig. 4: The stochastic noise and model-based uncertainty of realized climate at 1.5 °C.

References

  1. 1.

    United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (UNFCCC, 2015).

  2. 2.

    UNFCCC. Report on the Structured Expert Dialogue on the 2013–2015 Review http://unfccc.int/resource/docs/2015/sb/eng/inf01.pdf (UNFCCC, 2015).This document prepared in advance of the Paris Agreement provides the underlying rationale for setting changes in global temperature as climate targets.

  3. 3.

    Intergovernmental Panel on Climate Change (IPCC) in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 3–29 (Cambridge Univ. Press, Cambridge, 2013).

  4. 4.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016). This article highlights the large regional spread in climate model responses associated with given global temperature levels for specific regions and variables.

    ADS  Article  PubMed  CAS  Google Scholar 

  5. 5.

    Rogelj, J., Schleussner, C.-F. & Hare, W. Getting it right matters—temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–10665 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Cowtan, K. & Way, R.G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Met. Soc. 140, 1935–1944 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Richardson, M., Cowtan, K., Hawkins, E. & Stolpe, M. B. Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Chang. 6, 931–935 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  9. 9.

    LoPresti, A. et al. Rate and velocity of climate change caused by cumulative carbon emissions. Environ. Res. Lett. 10, 095001 (2015).

    ADS  Article  CAS  Google Scholar 

  10. 10.

    Bowerman, N. H. A., Frame, D. J., Huntingford, C., Lowe, J. A. & Allen, M. R. Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Phil. Trans. R. Soc. A 369, 45–66 (2011).

    ADS  Article  PubMed  CAS  Google Scholar 

  11. 11.

    Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 271–359 (Cambridge Univ. Press, Cambridge, 2014).

  12. 12.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Chang. 5, 519–527 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 6, 827–835 (2016).This article provides a discussion of the Paris Agreement from both scientific and policy perspectives.

    ADS  Article  Google Scholar 

  14. 14.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 413–510 (Cambridge Univ. Press, Cambridge, 2014).This chapter provides an overview of the scenarios considered compatible with limiting warming to 1.5 °C or 2 °C at the time of the IPCC AR5 report.

  15. 15.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5°C. Nature Clim. Chang. 8, 325–332 (2018).This article provides an overview on 1.5 °C scenarios from multiple models and under a wide range of socio-economic futures, revealing overall consistent results with previous publications 12,14 (see Box 1 and Supplementary Information).

    ADS  Article  CAS  Google Scholar 

  16. 16.

    Haustein, K. et al. A real-time Global Warming Index. Sci. Rep. 7, 15417 (2017).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2, 429–432 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Adger, W. N. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 755–791 (Cambridge Univ. Press, Cambridge, 2014).

  19. 19.

    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    ADS  Article  MathSciNet  CAS  Google Scholar 

  22. 22.

    Wang, Z. et al. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming. Sci. Rep. 7, 46432 (2017).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2, 775–779 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    van Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim. Change 109, 95–116 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    Hirsch, A. L., Wilhelm, M., Davin, E. L., Thiery, W. & Seneviratne, S. I. Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos. 122, 2269–2288 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Hirsch, A. L. et al. Biogeophysical impacts of land-use change on climate extremes in low-emissions scenarios: results from HAPPI-Land. Earth’s Future 6, 396–409 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Seneviratne, S. I. et al. Climate extremes, land-climate feedbacks, and land use forcing at 1.5°C. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0450 (2018).

  29. 29.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6, 42–50 (2016).

    ADS  Article  CAS  Google Scholar 

  30. 30.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Clim. Chang. 8, 151–155 (2018).

    ADS  Article  CAS  Google Scholar 

  31. 31.

    Boysen, L. R. et al. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 5, 463–474 (2017).

    ADS  Article  CAS  Google Scholar 

  32. 32.

    Obersteiner, M. et al. How to spend a dwindling greenhouse gas budget. Nat. Clim. Chang. 8, 7–10 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Van Vuuren, D. P. et al. Alternative pathways to the 1.5°C target reduce the need for negative emission technologies. Nat. Clim. Chang. 8, 391–397 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    ADS  Article  CAS  Google Scholar 

  35. 35.

    Matthews, H. D. et al. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3, 69–77 (2017).

    Article  Google Scholar 

  36. 36.

    Goodwin, P. et al. Pathways to 1.5° C and 2° C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    ADS  Article  CAS  Google Scholar 

  37. 37.

    Wartenburger, R. et al. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. 10, 3609–3634 (2017). This article is an extension of ref. 4, providing changes in a range of regional extremes as a function of global temperature changes based on simulations assessed in the IPCC AR5 72.

    ADS  Article  Google Scholar 

  38. 38.

    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    McDermott-Long, O. et al. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? J. Anim. Ecol. 86, 108–116 (2017).

    Article  PubMed  Google Scholar 

  40. 40.

    AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Beckage, B. et al. Linking models of human behaviour and climate alters projected climate change. Nature Clim. Chang. 8, 79–84 (2018).

    ADS  Article  Google Scholar 

  43. 43.

    Jenkins, S., Millar, R. J., Leach, N. & Allen, M. R. Framing climate goals in terms of cumulative CO2-forcing-equivalent emissions. Geophys. Res. Lett. 45, 2795–2804 (2018).

    ADS  Article  CAS  Google Scholar 

  44. 44.

    Fuglestvedt, J. et al. Implications of possible interpretations of “greenhouse gas balance” in the Paris Agreement. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0445 (2018).

  45. 45.

    Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies about the ‘global warming hiatus. Nature 545, 41–47 (2017).

    ADS  Article  PubMed  CAS  Google Scholar 

  46. 46.

    Smith, K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nature Clim. Chang. 6, 306–310 (2016).

    ADS  Article  CAS  Google Scholar 

  47. 47.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 6, 360–369 (2016).

    ADS  Article  Google Scholar 

  49. 49.

    Marzeion, B., Kaser, G., Maussion, F. & Champollion, N. Limited influence of climate change mitigation on short-term glacier mass loss. Nature Clim. Chang. 8, 305–308 (2018).

    ADS  Article  Google Scholar 

  50. 50.

    Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nature Clim. Chang. 7, 568–572 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Boucher, O., Lowe, J. A. & Jones, C. D. Implications of delayed actions in addressing carbon dioxide emission reduction in the context of geo-engineering. Clim. Change 92, 261–273 (2009).

    Article  CAS  Google Scholar 

  52. 52.

    Keith, D. W. & MacMartin, D. G. A temporary, moderate and responsive scenario for solar geoengineering. Nature Clim. Chang. 5, 201–206 (2015). (2015).

    ADS  Article  Google Scholar 

  53. 53.

    Tilmes, S., Sanderson, B. M. & O’Neill, B. C. Climate impacts of geoengineering in a delayed mitigation scenario. Geophys. Res. Lett. 43, 8222–8229 (2016).

    ADS  Article  Google Scholar 

  54. 54.

    Ferraro, A. J. & Griffiths, H. G. Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble. Environ. Res. Lett. 11, 34012 (2016).

    Article  CAS  Google Scholar 

  55. 55.

    Davis, N. A., Seidel, D. J., Birner, T., Davis, S. M. & Tilmes, S. Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations. Atmos. Chem. Phys. 16, 10083–10095 (2016).

    ADS  Article  CAS  Google Scholar 

  56. 56.

    Lo, Y. T. E., Charlton-Perez, A. J., Lott, F. C. & Highwood, E. J. Detecting sulphate aerosol geoengineering with different methods. Sci. Rep. 6, 39169 (2016).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Muri, H., Kristjánsson, J. E., Storelvmo, T. & Pfeffer, M. A. The climatic effects of modifying cirrus clouds in a climate engineering framework. J. Geophys. Res. 119, 4174–4191 (2014).

    Google Scholar 

  58. 58.

    Trisos, C. H. et al. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2, 475–482 (2018).

    Article  PubMed  Google Scholar 

  59. 59.

    O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  60. 60.

    Byers, E. A. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13, 055012 (2018).

  61. 61.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  62. 62.

    Muratori, M., Calvin, K., Wise, M., Kyle, P. & Edmonds, J. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environ. Res. Lett. 11, 95004 (2016).

    Article  Google Scholar 

  63. 63.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article  Google Scholar 

  64. 64.

    Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

  65. 65.

    Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  67. 67.

    Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  68. 68.

    Denton, F. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1101–1131 (Cambridge Univ. Press, Cambridge, 2014).

  69. 69.

    Fleurbaey, M. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 283–350 (Cambridge Univ. Press, Cambridge, 2014).

  70. 70.

    O’Brien, K. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) 437–486 (Cambridge Univ. Press, Cambridge, 2012).

  71. 71.

    Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    ADS  Article  CAS  Google Scholar 

  72. 72.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1–1535 (Cambridge Univ. Press, Cambridge, 2013).

  73. 73.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    ADS  Article  Google Scholar 

  74. 74.

    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

Download references

Acknowledgements

S.I.S. and R.W. acknowledge the European Research Council (ERC) ‘DROUGHT-HEAT’ project funded by the European Community’s Seventh Framework Programme (grant agreement FP7-IDEAS-ERC-617518). J.R. acknowledges the Oxford Martin School Visiting Fellowship programme for support. R.S. acknowledges the European Union’s H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach” (grant agreement H2020-641816). O.H.G. acknowledges support of the Australia Research Council Laureate program. This work contributes to the World Climate Research Programme (WCRP) Grand Challenge on Extremes. We acknowledge the WCRP Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Reviewer information

Nature thanks S. Davis, K. Tachiiri and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

S.I.S. coordinated the design and writing of the article, with contributions from all co-authors. J.R. provided the emissions scenario data processed in Table 1. R.S. computed the scenario summary statistics of Table 1. R.W. computed the regional projections statistics of Table 1, as well as Figs. 24. S.I.S. prepared Fig. 1, with support from P.T. and J.R. J.R., R.S., M.A., M.C. and R.M. co-designed the analyses of emissions scenarios. K.L.E., N.E., O.H.G., A.J.P., C.F.S., P.T. and R.F.W. provided assessments on physical, ecosystem and human impacts. S.I.S. drafted the first version of the manuscript, with inputs from J.R., R.S. and M.A. All authors contributed to and commented on the manuscript.

Corresponding author

Correspondence to Sonia I. Seneviratne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Tables 1-3, Supplementary Figures 1-3 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seneviratne, S.I., Rogelj, J., Séférian, R. et al. The many possible climates from the Paris Agreement’s aim of 1.5 °C warming. Nature 558, 41–49 (2018). https://doi.org/10.1038/s41586-018-0181-4

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing