Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Mass balance of the Antarctic Ice Sheet from 1992 to 2017

Abstract

The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antarctic Ice Sheet mass balance.
Fig. 2: Cumulative Antarctic Ice Sheet mass change.

Similar content being viewed by others

References

  1. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  ADS  Google Scholar 

  2. Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 333, 1427–1430 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland drainage systems. GSFC Cryospheric Sciences Laboratory http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (2012).

  4. Shepherd, A. et al. Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett. 37, L13503 (2010).

    Article  ADS  Google Scholar 

  5. Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

    Article  ADS  Google Scholar 

  6. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  ADS  Google Scholar 

  7. Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

    Article  ADS  CAS  Google Scholar 

  8. Joughin, I., Tulaczyk, S., Bindschadler, R. & Price, S. F. Changes in west Antarctic ice stream velocities: observation and analysis. J. Geophys. Res. Solid Earth 107, 2289 (2002).

    Article  ADS  Google Scholar 

  9. Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).

    Article  ADS  CAS  Google Scholar 

  10. Shepherd, A., Wingham, D. J. & Mansley, J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett. 29, https://doi.org/10.1029/2001GL014183 (2002).

  11. Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

    Article  ADS  CAS  Google Scholar 

  12. Rignot, E. & Thomas, R. H. Mass balance of polar ice sheets. Science 297, 1502–1506 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J. & Shum, C. K. Antarctic elevation change from 1992 to 1996. Science 282, 456–458 (1998).

    Article  ADS  PubMed  CAS  Google Scholar 

  14. Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  15. van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).

    Article  ADS  Google Scholar 

  16. King, M. A. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491, 586–589 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Briggs, K. et al. Charting ice-sheet contributions to global sea-level rise. Eos 97, https://doi.org/10.1029/2016EO055719 (2016).

  18. Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  19. Rignot, E., Mouginot, J. & Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett. 38, L10504 (2011).

    Article  ADS  Google Scholar 

  20. Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    Article  ADS  Google Scholar 

  21. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  ADS  CAS  Google Scholar 

  22. A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

    Article  ADS  Google Scholar 

  23. Sasgen, I. et al. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 7, 1499–1512 (2013).

    Article  ADS  Google Scholar 

  24. Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G-C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  ADS  Google Scholar 

  25. King, M. A., Whitehouse, P. L. & van der Wal, W. Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophys. J. Int. 204, 324–330 (2016).

    Article  ADS  Google Scholar 

  26. Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A. & Thomas, I. D. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int. 190, 1464–1482 (2012).

    Article  ADS  Google Scholar 

  27. Spada, G., Melini, D. & Colleoni, F. SELEN v2.9.12, https://geodynamics.org/cig/software/selen/ (Computational Infrastructure for Geodynamics, 2015).

  28. Konrad, H., Sasgen, I., Pollard, D. & Klemann, V. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet. Sci. Lett. 432, 254–264 (2015).

    Article  ADS  CAS  Google Scholar 

  29. Briggs, R. D., Pollard, D. & Tarasov, L. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quat. Sci. Rev. 103, 91–115 (2014).

    Article  ADS  Google Scholar 

  30. Ivins, E. R. & James, T. S. Antarctic glacial isostatic adjustment: a new assessment. Antarct. Sci. 17, 541–553 (2005).

    Article  ADS  Google Scholar 

  31. Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).

    Article  ADS  Google Scholar 

  32. Nield, G. A. et al. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet. Sci. Lett. 397, 32–41 (2014).

    Article  ADS  CAS  Google Scholar 

  33. Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    Article  ADS  Google Scholar 

  34. Shepherd, A., Fricker, H. A. & Farrell, S. L. Trends and connections across the Antarctic cryosphere. Nature 558, https://doi.org/10.1038/s41586-018-0171-6 (2018).

  35. Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).

    ADS  Google Scholar 

  36. Medley, B. et al. Temperature and snowfall in Western Queen Maud Land increasing faster than climate model projections. Geophys. Res. Lett. 45, 1472–1480 (2018).

    Article  ADS  Google Scholar 

  37. Favier, V. et al. An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere 7, 583–597 (2013).

    Article  ADS  Google Scholar 

  38. van de Berg, W. J. & Medley, B. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica. Cryosphere 10, 459–463 (2016).

    Article  ADS  Google Scholar 

  39. Palerme, C. et al. Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmos. Res. 190, 104–112 (2017).

    Article  Google Scholar 

  40. Van Wessem, J. M. et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol. 60, 761–770 (2014).

    Article  Google Scholar 

  41. Bromwich, D. H., Nicolas, J. P. & Monaghan, A. J. An assessment of precipitation changes over Antarctica and the southern ocean since 1989 in contemporary global reanalyses. J. Clim. 24, 4189–4209 (2011).

    Article  ADS  Google Scholar 

  42. Behrangi, A. et al. Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. 121, 4468–4486 (2016).

    Google Scholar 

  43. Klemann, V. & Martinec, Z. Contribution of glacial-isostatic adjustment to the geocentre motion. Tectonophysics 511, 99–108 (2011).

    Article  ADS  Google Scholar 

  44. van der Wal, W., Whitehouse, P. L. & Schrama, E. J. O. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett. 414, 134–143 (2015).

    Article  ADS  CAS  Google Scholar 

  45. Martín-Español, A. et al. An assessment of forward and inverse GIA solutions for Antarctica. J. Geophys. Res. Solid Earth 121, 6947–6965 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).

    Article  ADS  Google Scholar 

  47. Medley, B. et al. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere 8, 1375–1392 (2014).

    Article  ADS  Google Scholar 

  48. Lewis, G. et al. Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar. Cryosphere 11, 773–788 (2017).

    Article  ADS  Google Scholar 

  49. Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 13, 1491–1513 (2017).

    Article  Google Scholar 

  50. Thomas, I. D. et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 38, L22302 (2011).

    ADS  Google Scholar 

  51. Wahr, J., Wingham, D. & Bentley, C. A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J. Geophys. Res. Solid Earth 105, 16279–16294 (2000).

    Article  Google Scholar 

  52. Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).

    Article  ADS  Google Scholar 

  53. Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).

    Article  Google Scholar 

  54. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  ADS  Google Scholar 

  55. Groh, A. & Horwath, M. The method of tailored sensitivity kernels for GRACE mass change estimates. Geophys. Res. Abstr. 18, 12065 (2016).

    Google Scholar 

  56. Barletta, V. R., Sørensen, L. S. & Forsberg, R. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere 7, 1411–1432 (2013).

    Article  ADS  Google Scholar 

  57. Luthcke, S. B. et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 59, 613–631 (2013).

    Article  ADS  Google Scholar 

  58. Andrews, S. B., Moore, P. & King, M. A. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. Geophys. J. Int. 200, 503–518 (2015).

    Article  ADS  Google Scholar 

  59. Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).

    Article  ADS  Google Scholar 

  60. Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Article  ADS  Google Scholar 

  61. Schrama, E. J. O., Wouters, B. & Rietbroek, R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J. Geophys. Res. Solid Earth 119, 6048–6066 (2014).

    Article  ADS  Google Scholar 

  62. Seo, K. W. et al. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013. J. Geophys. Res. Solid Earth 120, 3617–3627 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  63. Velicogna, I., Sutterley, T. C. & van den Broeke, M. R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 41, 8130–8137 (2014).

    Article  ADS  Google Scholar 

  64. Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M. & Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 6, 613–616 (2013).

    Article  ADS  CAS  Google Scholar 

  65. Blazquez, A. et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface. Implications for the global water and sea level budgets. (submitted).

  66. Horvath, A. G. Retrieving Geophysical Signals from Current and Future Satellite Missions. PhD thesis, Tech. Univ. Munich (2017).

  67. Harig, C. & Simons, F. J. Mapping Greenland’s mass loss in space and time. Proc. Natl Acad. Sci. USA 109, 19934–19937 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Rietbroek, R., Brunnabend, S. E., Kusche, J. & Schröter, J. Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J. Geodyn. 59–60, 72–81 (2012).

    Article  Google Scholar 

  69. Babonis, G. S., Csatho, B. & Schenk, T. Mass balance changes and ice dynamics of Greenland and Antarctic ice sheets from laser altimetry. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XLI-B8 (eds Zdimal, V. et al.) 481–487 (ISPRS, 2016).

  70. Felikson, D. et al. Comparison of elevation change detection methods from ICESat altimetry over the Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens. 55, 5494–5505 (2017).

    Article  ADS  Google Scholar 

  71. Helm, V., Humbert, A. & Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 8, 1539–1559 (2014).

    Article  ADS  Google Scholar 

  72. Ewert, H. et al. Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys. J. Int. 191, 557–568 (2012).

    Article  Google Scholar 

  73. McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).

    Article  ADS  Google Scholar 

  74. Zwally, H. J. et al. Mass gains of the Antarctic ice sheet exceed losses. J. Glaciol. 61, 1019–1036 (2015).

    Article  ADS  Google Scholar 

  75. Gunter, B. C. et al. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere 8, 743–760 (2014).

    Article  ADS  Google Scholar 

  76. Scambos, T. & Shuman, C. Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others. J. Glaciol. 62, 599–603 (2016).

    Article  ADS  Google Scholar 

  77. Zwally, H. J. et al. Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). J. Glaciol. 62, 990–992 (2016).

    Article  ADS  Google Scholar 

  78. Richter, A. et al. Height changes over subglacial Lake Vostok, East Antarctica: insights from GNSS observations. J. Geophys. Res. Earth Surf. 119, 2460–2480 (2014).

    Article  ADS  Google Scholar 

  79. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

    Article  ADS  Google Scholar 

  80. Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 4 (Cambridge Univ. Press, New York, 2013).

  81. Bouman, J. et al. Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophys. Res. Lett. 41, 5919–5926 (2014).

    Article  ADS  Google Scholar 

  82. Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).

    Article  ADS  Google Scholar 

  83. Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

    Article  ADS  Google Scholar 

  84. Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).

    Article  ADS  Google Scholar 

  85. Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  86. Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

    Article  ADS  Google Scholar 

  87. Lenaerts, J. T. M. et al. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).

    Article  ADS  Google Scholar 

  88. Pollard, D. & Deconto, R. M. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci. Model Dev. 5, 1273–1295 (2012).

    Article  ADS  Google Scholar 

  89. Martinec, Z. Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys. J. Int. 142, 117–141 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is an outcome of the ESA–NASA Ice Sheet Mass Balance Inter-comparison Exercise. A.S. was additionally supported by a Royal Society Wolfson Research Merit Award and by the ESA Climate Change Initiative.

Reviewer information

Nature thanks R. Bell and C. Hulbe for their contribution to the peer review of this work.

The IMBIE team:

Andrew Shepherd1,*, Erik Ivins2, Eric Rignot3, Ben Smith4, Michiel van den Broeke5, Isabella Velicogna3, Pippa Whitehouse6, Kate Briggs1, Ian Joughin4, Gerhard Krinner7, Sophie Nowicki8, Tony Payne9, Ted Scambos10, Nicole Schlegel2, Geruo A3, Cécile Agosta11, Andreas Ahlstrøm12, Greg Babonis13, Valentina Barletta14, Alejandro Blazquez15, Jennifer Bonin16, Beata Csatho13, Richard Cullather17, Denis Felikson18, Xavier Fettweis11, Rene Forsberg14, Hubert Gallee7, Alex Gardner2, Lin Gilbert19, Andreas Groh20, Brian Gunter21, Edward Hanna22, Christopher Harig23, Veit Helm24, Alexander Horvath25, Martin Horwath20, Shfaqat Khan14, Kristian K. Kjeldsen12,26, Hannes Konrad1, Peter Langen27, Benoit Lecavalier28, Bryant Loomis8, Scott Luthcke8, Malcolm McMillan1, Daniele Melini29, Sebastian Mernild30,31,32, Yara Mohajerani3, Philip Moore33, Jeremie Mouginot3,7, Gorka Moyano34, Alan Muir19, Thomas Nagler35, Grace Nield6, Johan Nilsson2, Brice Noel5, Ines Otosaka1, Mark E. Pattle34, W. Richard Peltier36, Nadege Pie18, Roelof Rietbroek37, Helmut Rott35, Louise Sandberg-Sørensen14, Ingo Sasgen24, Himanshu Save18, Bernd Scheuchl3, Ernst Schrama38, Ludwig Schröder20, Ki-Weon Seo39, Sebastian Simonsen14, Tom Slater1, Giorgio Spada40, Tyler Sutterley3, Matthieu Talpe41, Lev Tarasov28, Willem Jan van de Berg5, Wouter van der Wal38, Melchior van Wessem5, Bramha Dutt Vishwakarma42, David Wiese2 & Bert Wouters5

Author information

Authors and Affiliations

Consortia

Contributions

A.S. and E.I. designed and led the study. E.R., B.S., M.v.d.B., I.V. and P.W. led the input–output-method, altimetry, SMB, gravimetry and GIA experiments, respectively. G.M. and M.E.P. performed the data collation and analysis. A.S., E.I., K.B., G.K., M.H., I.J., H.K., M.M., J.M., S.N., I.O., M.E.P., T.P., E.R., I.S., T.Sc., N.S., T.Sl., B.S., I.V., M.v.W. and P.W. wrote and edited the manuscript. All authors participated in the data interpretation and commented on the manuscript.

Corresponding author

Correspondence to Andrew Shepherd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Datasets of ice-sheet mass balance included in our assessment.

Details about the datasets are provided in Supplementary Table 1. Some datasets did not encompass all three ice sheets.

Extended Data Fig. 2 Ice-sheet drainage basins.

AIS drainage basins are determined according to the definitions of ref. 3 (left) and refs 2,19 (right). Basins that fall within the Antarctic Peninsula, West Antarctica and East Antarctica are shown in green, pink and blue, respectively. For the definition from ref. 3, the Antarctic Peninsula, West Antarctica and East Antarctica basins cover areas of 227,725 km2, 1,748,200 km2 and 9,909,800 km2, respectively. For the definition from refs 2,19, the Antarctic Peninsula, West Antarctica and East Antarctica basins cover areas of 232,950 km2, 2,039,525 km2 and 9,620,225 km2, respectively.

Extended Data Fig. 3 Temporal variations in AIS SMB.

We show time series of integrated SMB in AIS drainage regions2,19 from the MARv2.6 (blue) and RACMO2.3p2 (red) models. Solid lines are annual averages of the monthly data (dashed lines). mo, month.

Extended Data Fig. 4 Modelled GIA beneath the AIS.

a, Bedrock uplift rates in Antarctica averaged over the GIA model solutions used in this assessment. b, The corresponding standard deviations.

Extended Data Fig. 5 Individual rates of ice-sheet mass balance.

ai, Mass-balance estimates were determined from satellite altimetry (ac), gravimetry (de) and the input–output method (gi) for the Antarctic Peninsula (a, d, g), East Antarctica (b, e, h) and West Antarctica (c, f, i). The light-grey shading shows the estimated 1σ uncertainty relative to the ensemble average. The standard error of the mean solutions, per epoch, is shown in mid-grey.

Extended Data Table 1 Spatially averaged AIS SMB
Extended Data Table 2 GIA model details
Extended Data Table 3 Features of mass-balance datasets included in our assessment
Extended Data Table 4 Aggregated estimates of ice-sheet mass balance from satellite altimetry, gravimetry and the input–output method

Supplementary information

Supplementary Table 1

This table contains details of the satellite datasets used in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018). https://doi.org/10.1038/s41586-018-0179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0179-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing