Analysis | Published:

Mass balance of the Antarctic Ice Sheet from 1992 to 2017

Naturevolume 558pages219222 (2018) | Download Citation

Abstract

The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

  2. 2.

    Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 333, 1427–1430 (2011).

  3. 3.

    Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland drainage systems. GSFC Cryospheric Sciences Laboratory http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (2012).

  4. 4.

    Shepherd, A. et al. Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett. 37, L13503 (2010).

  5. 5.

    Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

  6. 6.

    Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

  7. 7.

    Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

  8. 8.

    Joughin, I., Tulaczyk, S., Bindschadler, R. & Price, S. F. Changes in west Antarctic ice stream velocities: observation and analysis. J. Geophys. Res. Solid Earth 107, 2289 (2002).

  9. 9.

    Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).

  10. 10.

    Shepherd, A., Wingham, D. J. & Mansley, J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett. 29, https://doi.org/10.1029/2001GL014183 (2002).

  11. 11.

    Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

  12. 12.

    Rignot, E. & Thomas, R. H. Mass balance of polar ice sheets. Science 297, 1502–1506 (2002).

  13. 13.

    Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J. & Shum, C. K. Antarctic elevation change from 1992 to 1996. Science 282, 456–458 (1998).

  14. 14.

    Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).

  15. 15.

    van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).

  16. 16.

    King, M. A. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491, 586–589 (2012).

  17. 17.

    Briggs, K. et al. Charting ice-sheet contributions to global sea-level rise. Eos 97, https://doi.org/10.1029/2016EO055719 (2016).

  18. 18.

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

  19. 19.

    Rignot, E., Mouginot, J. & Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett. 38, L10504 (2011).

  20. 20.

    Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

  21. 21.

    Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

  22. 22.

    A, G., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

  23. 23.

    Sasgen, I. et al. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 7, 1499–1512 (2013).

  24. 24.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G-C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

  25. 25.

    King, M. A., Whitehouse, P. L. & van der Wal, W. Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophys. J. Int. 204, 324–330 (2016).

  26. 26.

    Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A. & Thomas, I. D. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int. 190, 1464–1482 (2012).

  27. 27.

    Spada, G., Melini, D. & Colleoni, F. SELEN v2.9.12, https://geodynamics.org/cig/software/selen/ (Computational Infrastructure for Geodynamics, 2015).

  28. 28.

    Konrad, H., Sasgen, I., Pollard, D. & Klemann, V. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet. Sci. Lett. 432, 254–264 (2015).

  29. 29.

    Briggs, R. D., Pollard, D. & Tarasov, L. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quat. Sci. Rev. 103, 91–115 (2014).

  30. 30.

    Ivins, E. R. & James, T. S. Antarctic glacial isostatic adjustment: a new assessment. Antarct. Sci. 17, 541–553 (2005).

  31. 31.

    Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).

  32. 32.

    Nield, G. A. et al. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet. Sci. Lett. 397, 32–41 (2014).

  33. 33.

    Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

  34. 34.

    Shepherd, A., Fricker, H. A. & Farrell, S. L. Trends and connections across the Antarctic cryosphere. Nature 558, https://doi.org/10.1038/s41586-018-0171-6 (2018).

  35. 35.

    Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).

  36. 36.

    Medley, B. et al. Temperature and snowfall in Western Queen Maud Land increasing faster than climate model projections. Geophys. Res. Lett. 45, 1472–1480 (2018).

  37. 37.

    Favier, V. et al. An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere 7, 583–597 (2013).

  38. 38.

    van de Berg, W. J. & Medley, B. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica. Cryosphere 10, 459–463 (2016).

  39. 39.

    Palerme, C. et al. Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmos. Res. 190, 104–112 (2017).

  40. 40.

    Van Wessem, J. M. et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol. 60, 761–770 (2014).

  41. 41.

    Bromwich, D. H., Nicolas, J. P. & Monaghan, A. J. An assessment of precipitation changes over Antarctica and the southern ocean since 1989 in contemporary global reanalyses. J. Clim. 24, 4189–4209 (2011).

  42. 42.

    Behrangi, A. et al. Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. 121, 4468–4486 (2016).

  43. 43.

    Klemann, V. & Martinec, Z. Contribution of glacial-isostatic adjustment to the geocentre motion. Tectonophysics 511, 99–108 (2011).

  44. 44.

    van der Wal, W., Whitehouse, P. L. & Schrama, E. J. O. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett. 414, 134–143 (2015).

  45. 45.

    Martín-Español, A. et al. An assessment of forward and inverse GIA solutions for Antarctica. J. Geophys. Res. Solid Earth 121, 6947–6965 (2016).

  46. 46.

    Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).

  47. 47.

    Medley, B. et al. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere 8, 1375–1392 (2014).

  48. 48.

    Lewis, G. et al. Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar. Cryosphere 11, 773–788 (2017).

  49. 49.

    Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 13, 1491–1513 (2017).

  50. 50.

    Thomas, I. D. et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 38, L22302 (2011).

  51. 51.

    Wahr, J., Wingham, D. & Bentley, C. A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J. Geophys. Res. Solid Earth 105, 16279–16294 (2000).

  52. 52.

    Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).

  53. 53.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).

  54. 54.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

  55. 55.

    Groh, A. & Horwath, M. The method of tailored sensitivity kernels for GRACE mass change estimates. Geophys. Res. Abstr. 18, 12065 (2016).

  56. 56.

    Barletta, V. R., Sørensen, L. S. & Forsberg, R. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere 7, 1411–1432 (2013).

  57. 57.

    Luthcke, S. B. et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 59, 613–631 (2013).

  58. 58.

    Andrews, S. B., Moore, P. & King, M. A. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. Geophys. J. Int. 200, 503–518 (2015).

  59. 59.

    Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).

  60. 60.

    Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

  61. 61.

    Schrama, E. J. O., Wouters, B. & Rietbroek, R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J. Geophys. Res. Solid Earth 119, 6048–6066 (2014).

  62. 62.

    Seo, K. W. et al. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013. J. Geophys. Res. Solid Earth 120, 3617–3627 (2015).

  63. 63.

    Velicogna, I., Sutterley, T. C. & van den Broeke, M. R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 41, 8130–8137 (2014).

  64. 64.

    Wouters, B., Bamber, J. L., van den Broeke, M. R., Lenaerts, J. T. M. & Sasgen, I. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci. 6, 613–616 (2013).

  65. 65.

    Blazquez, A. et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface. Implications for the global water and sea level budgets. (submitted).

  66. 66.

    Horvath, A. G. Retrieving Geophysical Signals from Current and Future Satellite Missions. PhD thesis, Tech. Univ. Munich (2017).

  67. 67.

    Harig, C. & Simons, F. J. Mapping Greenland’s mass loss in space and time. Proc. Natl Acad. Sci. USA 109, 19934–19937 (2012).

  68. 68.

    Rietbroek, R., Brunnabend, S. E., Kusche, J. & Schröter, J. Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J. Geodyn. 59–60, 72–81 (2012).

  69. 69.

    Babonis, G. S., Csatho, B. & Schenk, T. Mass balance changes and ice dynamics of Greenland and Antarctic ice sheets from laser altimetry. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XLI-B8 (eds Zdimal, V. et al.) 481–487 (ISPRS, 2016).

  70. 70.

    Felikson, D. et al. Comparison of elevation change detection methods from ICESat altimetry over the Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens. 55, 5494–5505 (2017).

  71. 71.

    Helm, V., Humbert, A. & Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 8, 1539–1559 (2014).

  72. 72.

    Ewert, H. et al. Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica. Geophys. J. Int. 191, 557–568 (2012).

  73. 73.

    McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).

  74. 74.

    Zwally, H. J. et al. Mass gains of the Antarctic ice sheet exceed losses. J. Glaciol. 61, 1019–1036 (2015).

  75. 75.

    Gunter, B. C. et al. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. Cryosphere 8, 743–760 (2014).

  76. 76.

    Scambos, T. & Shuman, C. Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others. J. Glaciol. 62, 599–603 (2016).

  77. 77.

    Zwally, H. J. et al. Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). J. Glaciol. 62, 990–992 (2016).

  78. 78.

    Richter, A. et al. Height changes over subglacial Lake Vostok, East Antarctica: insights from GNSS observations. J. Geophys. Res. Earth Surf. 119, 2460–2480 (2014).

  79. 79.

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

  80. 80.

    Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 4 (Cambridge Univ. Press, New York, 2013).

  81. 81.

    Bouman, J. et al. Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophys. Res. Lett. 41, 5919–5926 (2014).

  82. 82.

    Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).

  83. 83.

    Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

  84. 84.

    Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).

  85. 85.

    Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

  86. 86.

    Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

  87. 87.

    Lenaerts, J. T. M. et al. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).

  88. 88.

    Pollard, D. & Deconto, R. M. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci. Model Dev. 5, 1273–1295 (2012).

  89. 89.

    Martinec, Z. Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys. J. Int. 142, 117–141 (2000).

Download references

Acknowledgements

This work is an outcome of the ESA–NASA Ice Sheet Mass Balance Inter-comparison Exercise. A.S. was additionally supported by a Royal Society Wolfson Research Merit Award and by the ESA Climate Change Initiative.

Reviewer information

Nature thanks R. Bell and C. Hulbe for their contribution to the peer review of this work.

The IMBIE team:

Andrew Shepherd1,*, Erik Ivins2, Eric Rignot3, Ben Smith4, Michiel van den Broeke5, Isabella Velicogna3, Pippa Whitehouse6, Kate Briggs1, Ian Joughin4, Gerhard Krinner7, Sophie Nowicki8, Tony Payne9, Ted Scambos10, Nicole Schlegel2, Geruo A3, Cécile Agosta11, Andreas Ahlstrøm12, Greg Babonis13, Valentina Barletta14, Alejandro Blazquez15, Jennifer Bonin16, Beata Csatho13, Richard Cullather17, Denis Felikson18, Xavier Fettweis11, Rene Forsberg14, Hubert Gallee7, Alex Gardner2, Lin Gilbert19, Andreas Groh20, Brian Gunter21, Edward Hanna22, Christopher Harig23, Veit Helm24, Alexander Horvath25, Martin Horwath20, Shfaqat Khan14, Kristian K. Kjeldsen12,26, Hannes Konrad1, Peter Langen27, Benoit Lecavalier28, Bryant Loomis8, Scott Luthcke8, Malcolm McMillan1, Daniele Melini29, Sebastian Mernild30,31,32, Yara Mohajerani3, Philip Moore33, Jeremie Mouginot3,7, Gorka Moyano34, Alan Muir19, Thomas Nagler35, Grace Nield6, Johan Nilsson2, Brice Noel5, Ines Otosaka1, Mark E. Pattle34, W. Richard Peltier36, Nadege Pie18, Roelof Rietbroek37, Helmut Rott35, Louise Sandberg-Sørensen14, Ingo Sasgen24, Himanshu Save18, Bernd Scheuchl3, Ernst Schrama38, Ludwig Schröder20, Ki-Weon Seo39, Sebastian Simonsen14, Tom Slater1, Giorgio Spada40, Tyler Sutterley3, Matthieu Talpe41, Lev Tarasov28, Willem Jan van de Berg5, Wouter van der Wal38, Melchior van Wessem5, Bramha Dutt Vishwakarma42, David Wiese2 & Bert Wouters5

Author information

Affiliations

  1. Centre for Polar Observation and Modelling, University of Leeds, Leeds, UK

    • Andrew Shepherd
    • , Kate Briggs
    • , Hannes Konrad
    • , Malcolm McMillan
    • , Ines Otosaka
    •  & Tom Slater
  2. NASA Jet Propulsion Laboratory, Pasadena, CA, USA

    • Erik Ivins
    • , Nicole Schlegel
    • , Alex Gardner
    • , Johan Nilsson
    •  & David Wiese
  3. Department of Earth System Science, University of California, Irvine, CA, USA

    • Eric Rignot
    • , Isabella Velicogna
    • , Geruo A
    • , Yara Mohajerani
    • , Jeremie Mouginot
    • , Bernd Scheuchl
    •  & Tyler Sutterley
  4. Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA

    • Ben Smith
    •  & Ian Joughin
  5. Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands

    • Michiel van den Broeke
    • , Brice Noel
    • , Willem Jan van de Berg
    • , Melchior van Wessem
    •  & Bert Wouters
  6. Department of Geography, Durham University, Durham, UK

    • Pippa Whitehouse
    •  & Grace Nield
  7. Institute of Environmental Geosciences, Université Grenoble Alpes, Grenoble, France

    • Gerhard Krinner
    • , Hubert Gallee
    •  & Jeremie Mouginot
  8. Cryospheric Sciences Laboratory, NASA Goddard Space Flight Centre, Greenbelt, MD, USA

    • Sophie Nowicki
    • , Bryant Loomis
    •  & Scott Luthcke
  9. School of Geographical Sciences, University of Bristol, Bristol, UK

    • Tony Payne
  10. National Snow and Ice Data Centre, University of Colorado, Boulder, CO, USA

    • Ted Scambos
  11. Department of Geography, University of Liège, Liège, Belgium

    • Cécile Agosta
    •  & Xavier Fettweis
  12. Geological Survey of Denmark and Greenland, Copenhagen, Denmark

    • Andreas Ahlstrøm
    •  & Kristian K. Kjeldsen
  13. Department of Geology, State University of New York at Buffalo, Buffalo, NY, USA

    • Greg Babonis
    •  & Beata Csatho
  14. DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark

    • Valentina Barletta
    • , Rene Forsberg
    • , Shfaqat Khan
    • , Louise Sandberg-Sørensen
    •  & Sebastian Simonsen
  15. Spatial Geophysics and Oceanography Studies Laboratory, Toulouse, France

    • Alejandro Blazquez
  16. College of Marine Sciences, University of South Florida, Tampa, FL, USA

    • Jennifer Bonin
  17. Earth System Science Interdisciplinary Centre, NASA Goddard Space Flight Centre, Greenbelt, MD, USA

    • Richard Cullather
  18. Centre for Space Research, University of Texas, Austin, TX, USA

    • Denis Felikson
    • , Nadege Pie
    •  & Himanshu Save
  19. Mullard Space Science Laboratory, University College London, Holmbury St Mary, UK

    • Lin Gilbert
    •  & Alan Muir
  20. Institute for Planetary Geodesy, Technische Universitat Dresden, Dresden, Germany

    • Andreas Groh
    • , Martin Horwath
    •  & Ludwig Schröder
  21. Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA

    • Brian Gunter
  22. School of Geography, University of Lincoln, Lincoln, UK

    • Edward Hanna
  23. Department of Geosciences, University of Arizona, Tucson, AZ, USA

    • Christopher Harig
  24. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

    • Veit Helm
    •  & Ingo Sasgen
  25. Institute of Astronomical and Physical Geodesy, Technical University Munich, Munich, Germany

    • Alexander Horvath
  26. Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark

    • Kristian K. Kjeldsen
  27. Danish Meteorological Institute, Copenhagen, Denmark

    • Peter Langen
  28. Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. Johns, Newfoundland and Labrador, Canada

    • Benoit Lecavalier
    •  & Lev Tarasov
  29. Section of Seismology and Tectonophysics, National Institute of Geophysics and Volcanology, Rome, Italy

    • Daniele Melini
  30. Nansen Environmental and Remote Sensing Centre, Bergen, Norway

    • Sebastian Mernild
  31. Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway

    • Sebastian Mernild
  32. Direction of Antarctic and Sub-Antarctic Programs, Universidad de Magallanes, Punta Arenas, Chile

    • Sebastian Mernild
  33. School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK

    • Philip Moore
  34. isardSAT, Barcelona, Spain

    • Gorka Moyano
    •  & Mark E. Pattle
  35. ENVEO, Innsbruck, Austria

    • Thomas Nagler
    •  & Helmut Rott
  36. Department of Physics, University of Toronto, Toronto, Ontario, Canada

    • W. Richard Peltier
  37. Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

    • Roelof Rietbroek
  38. Department of Space Engineering, Delft University of Technology, Delft, The Netherlands

    • Ernst Schrama
    •  & Wouter van der Wal
  39. Department of Earth Science Education, Seoul National University, Seoul, South Korea

    • Ki-Weon Seo
  40. Institute of Physics, University of Urbino “Carlo Bo”, Urbino, Italy

    • Giorgio Spada
  41. Aerospace Engineering Sciences, Centre for Astrodynamics Research, University of Colorado, Boulder, CO, USA

    • Matthieu Talpe
  42. Geodetic Institute, University of Stuttgart, Stuttgart, Germany

    • Bramha Dutt Vishwakarma

Consortia

  1. The IMBIE team

Contributions

A.S. and E.I. designed and led the study. E.R., B.S., M.v.d.B., I.V. and P.W. led the input–output-method, altimetry, SMB, gravimetry and GIA experiments, respectively. G.M. and M.E.P. performed the data collation and analysis. A.S., E.I., K.B., G.K., M.H., I.J., H.K., M.M., J.M., S.N., I.O., M.E.P., T.P., E.R., I.S., T.Sc., N.S., T.Sl., B.S., I.V., M.v.W. and P.W. wrote and edited the manuscript. All authors participated in the data interpretation and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Andrew Shepherd.

Extended data figures and tables

  1. Extended Data Fig. 1 Datasets of ice-sheet mass balance included in our assessment.

    Details about the datasets are provided in Supplementary Table 1. Some datasets did not encompass all three ice sheets.

  2. Extended Data Fig. 2 Ice-sheet drainage basins.

    AIS drainage basins are determined according to the definitions of ref. 3 (left) and refs 2,19 (right). Basins that fall within the Antarctic Peninsula, West Antarctica and East Antarctica are shown in green, pink and blue, respectively. For the definition from ref. 3, the Antarctic Peninsula, West Antarctica and East Antarctica basins cover areas of 227,725 km2, 1,748,200 km2 and 9,909,800 km2, respectively. For the definition from refs 2,19, the Antarctic Peninsula, West Antarctica and East Antarctica basins cover areas of 232,950 km2, 2,039,525 km2 and 9,620,225 km2, respectively.

  3. Extended Data Fig. 3 Temporal variations in AIS SMB.

    We show time series of integrated SMB in AIS drainage regions2,19 from the MARv2.6 (blue) and RACMO2.3p2 (red) models. Solid lines are annual averages of the monthly data (dashed lines). mo, month.

  4. Extended Data Fig. 4 Modelled GIA beneath the AIS.

    a, Bedrock uplift rates in Antarctica averaged over the GIA model solutions used in this assessment. b, The corresponding standard deviations.

  5. Extended Data Fig. 5 Individual rates of ice-sheet mass balance.

    ai, Mass-balance estimates were determined from satellite altimetry (ac), gravimetry (de) and the input–output method (gi) for the Antarctic Peninsula (a, d, g), East Antarctica (b, e, h) and West Antarctica (c, f, i). The light-grey shading shows the estimated 1σ uncertainty relative to the ensemble average. The standard error of the mean solutions, per epoch, is shown in mid-grey.

  6. Extended Data Table 1 Spatially averaged AIS SMB
  7. Extended Data Table 2 GIA model details
  8. Extended Data Table 3 Features of mass-balance datasets included in our assessment
  9. Extended Data Table 4 Aggregated estimates of ice-sheet mass balance from satellite altimetry, gravimetry and the input–output method

Supplementary information

  1. Supplementary Table 1

    This table contains details of the satellite datasets used in this study

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0179-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.