Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-distance navigation and magnetoreception in migratory animals

Abstract

For centuries, humans have been fascinated by how migratory animals find their way over thousands of kilometres. Here, I review the mechanisms used in animal orientation and navigation with a particular focus on long-distance migrants and magnetoreception. I contend that any long-distance navigational task consists of three phases and that no single cue or mechanism will enable animals to navigate with pinpoint accuracy over thousands of kilometres. Multiscale and multisensory cue integration in the brain is needed. I conclude by raising twenty important mechanistic questions related to long-distance animal navigation that should be solved over the next twenty years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Some of the world’s most famous long-distance navigators.
Fig. 2: The three different phases of a long-distance navigational task and examples of the typical cues used.
Fig. 3: A mechanical analogy of the radical-pair mechanism.

Similar content being viewed by others

References

  1. Wiltschko, R. & Wiltschko, W. Magnetic Orientation in Animals (Springer, Berlin, 1995). This book is an exhaustive account of almost all studies related to magnetoreception in any animal published before 1995, and it is a valuable historical account of the early achievements in the field.

    Book  MATH  Google Scholar 

  2. Berthold, P. A comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich 70, 1–11 (1999).

    Article  Google Scholar 

  3. Mouritsen, H. in Avian Migration (eds Berthold, P., Gwinner, E. & Sonnenschein, E.) 493–513 (Springer, Berlin, 2003).

  4. Mouritsen, H. in Sturkie’s Avian Physiology (ed. Scanes, C.) 113–133 (Elsevier, Amsterdam, 2015).

  5. Schmaljohann, H., Fox, J. W. & Bairlein, F. Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world. Anim. Behav. 84, 623–640 (2012).

    Article  Google Scholar 

  6. Salewski, V., Bairlein, F. & Leisler, B. Recurrence of some palaearctic migrant passerine species in West Africa. Ring. Migr. 20, 29–30 (2000).

    Article  Google Scholar 

  7. Gill, R. E. Jr et al. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc. R. Soc. Lond. B 276, 447–457 (2009).

    Article  Google Scholar 

  8. Egevang, C. et al. Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc. Natl Acad. Sci. USA 107, 2078–2081 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Jouventin, P. & Weimerskirch, H. Satellite tracking of wandering albatrosses. Nature 343, 746–748 (1990).

    Article  ADS  Google Scholar 

  10. Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805 (2013). This paper convincingly showed that olfactory information is essential for long-distance homing in Cory’s shearwaters, because birds fitted with satellite transmitters and released about 800 km from home with their olfactory nerves cut wandered aimlessly around the Atlantic Ocean, whereas shearwaters with intact olfactory nerves but with cut ophthalmic branches of the trigeminal nerves went straight home.

    Article  PubMed  Google Scholar 

  11. Brower, L. Monarch butterfly orientation: missing pieces of a magnificent puzzle. J. Exp. Biol. 199, 93–103 (1996).

    PubMed  CAS  Google Scholar 

  12. Mouritsen, H. & Frost, B. J. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc. Natl Acad. Sci. USA 99, 10162–10166 (2002).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zeil, J. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22, 285–293 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Wehner, R., Cheng, K. & Cruse, H. in The New Visual Neurosciences 1153–1164 (MIT Press, Cambridge, 2014).

    Google Scholar 

  15. Bech, M., Homberg, U. & Pfeiffer, K. Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr. Biol. 24, 2124–2129 (2014). This elegant electrophysiological paper used the scientific advantage of the simplicity of the insect brain to show that some neurons in the central complex of locusts seem to be matched filters to the natural polarization pattern, so that different cells respond to different orientations of the complete celestial polarization pattern across the dome of the sky, and that these neurons can differentiate between solar and antisolar directions based only on the polarization pattern.

    Article  PubMed  CAS  Google Scholar 

  16. Heinze, S. Neuroethology: unweaving the senses of direction. Curr. Biol. 25, R1034–R1037 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).

    Article  PubMed  Google Scholar 

  18. Warrant, E. et al. The Australian bogong moth Agrotis infusa: a long-distance nocturnal navigator. Front. Behav. Neurosci. 10, 77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chapman, J. W. et al. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518 (2008). This paper was the first to show that high-flying insects are not at the mercy of the wind but that they actively orient themselves in mid-air and that they choose favourable airstreams that enable them to perform directed migration in spring and return migration in autumn; this paper therefore also disproved the ‘pied piper’ hypothesis that high-flying insects were blown in random directions.

    Article  PubMed  CAS  Google Scholar 

  20. Chapman, J. W. et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327, 682–685 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Hu, G. et al. Mass seasonal bioflows of high-flying insect migrants. Science 354, 1584–1587 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Lohmann, K. J., Cain, S. D., Dodge, S. A. & Lohmann, C. M. F. Regional magnetic fields as navigational markers for sea turtles. Science 294, 364–366 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  23. Putman, N. F. et al. Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon. Curr. Biol. 23, 312–316 (2013). This elegant paper used fisheries data and information on geomagnetic field drift to demonstrate that Pacific salmon returning to spawn had imprinted on the geomagnetic parameters of their natal river mouth before they left the area years earlier.

    Article  PubMed  CAS  Google Scholar 

  24. Brothers, J. R. & Lohmann, K. J. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25, 392–396 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Bett, N. N. & Hinch, S. G. Olfactory navigation during spawning migrations: a review and introduction of the hierarchical navigation hypothesis. Biol. Rev. Camb. Philos. Soc. 91, 728–759 (2016).

    Article  PubMed  Google Scholar 

  26. Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl Acad. Sci. USA 104, 858–863 (2007). This paper used genetic fingerprinting and behavioural tests to elegantly demonstrate that returning reef fish larvae are attracted to the odour of their natal reef, that they can discriminate this odour from the odour of other reefs, and that this olfactory imprinting on their natal reef might help explain the high levels of retention and speciation in coral reefs.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mouritsen, H., Atema, J., Kingsford, M. J. & Gerlach, G. Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS One 8, e66039 (2013).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bottesch, M. et al. A magnetic compass that might help coral reef fish larvae return to their natal reef. Curr. Biol. 26, R1266–R1267 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Alerstam, T. et al. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc. R. Soc. Lond. B 278, 3074–3080 (2011).

    Article  Google Scholar 

  30. Lohmann, K. J., Lohmann, C. M. F., Brothers, J. R. & Putman, N. F. in The Biology of Sea Turtles (eds Wyneken, J., Lohmann, K. J. & Musick, J. A.) vol. 3, 59–77 (CRC Press, Boca Raton, 2013).

  31. Holland, R. A. True navigation in birds: from quantum physics to global migration. J. Zool. (Lond.) 293, 1–15 (2014).

    Article  Google Scholar 

  32. Mouritsen, H., Heyers, D. & Güntürkün, O. The neural basis of long-distance navigation in birds. Annu. Rev. Physiol. 78, 133–154 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Phillips, J. B. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767 (1986).

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Guilford, T. & Biro, D. Route following and the pigeon’s familiar area map. J. Exp. Biol. 217, 169–179 (2014).

    Article  PubMed  Google Scholar 

  35. Griffin, D. R. Bird navigation. Biol. Rev. Camb. Philos. Soc. 27, 359–400 (1952).

    Article  Google Scholar 

  36. Perdeck, A. C. Two types of orientation in migrating Sturnus vulgaris and Fringilla coelebs as revealed by displacement experiments. Ardea 46, 1–37 (1958).

    Google Scholar 

  37. Chernetsov, N., Kishkinev, D. & Mouritsen, H. A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr. Biol. 18, 188–190 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Chernetsov, N. et al. Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr. Biol. 27, 2647–2651.e2 (2017). This paper showed that adult, but not juvenile, Eurasian reed warblers can use magnetic declination—which requires two compasses—to correct for a virtual magnetic displacement from Kaliningrad to Scotland and therefore suggest that many bird species in Europe and North America could use magnetic declination to solve the enigmatic longitude problem.

    Article  PubMed  CAS  Google Scholar 

  39. Mouritsen, H. et al. An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. Proc. Natl Acad. Sci. USA 110, 7348–7353 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Lugo Ramos, J. S., Delmore, K. E. & Liedvogel, M. Candidate genes for migration do not distinguish migratory and non-migratory birds. J. Comp. Physiol. 203, 383–397 (2017).

    Article  CAS  Google Scholar 

  41. Lohmann, K. J., Lohmann, C. M. F. & Putman, N. F. Magnetic maps in animals: nature’s GPS. J. Exp. Biol. 210, 3697–3705 (2007).

    Article  PubMed  Google Scholar 

  42. Mouritsen, H. & Mouritsen, O. A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J. Theor. Biol. 207, 283–291 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA 104, 18115–18119 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Deutschlander, M. E., Phillips, J. B. & Munro, U. Age-dependent orientation to magnetically-simulated geographic displacements in migratory Australian silvereyes (Zosterops l. lateralis). Wilson J. Ornithol. 124, 467–477 (2012).

    Article  Google Scholar 

  45. Holland, R. A. & Helm, B. A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J. R. Soc. Interface 10, 20121047 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Phillips, J. B., Freake, M. J., Fischer, J. H. & Borland, C. Behavioral titration of a magnetic map coordinate. J. Comp. Physiol. 188, 157–160 (2002).

    Article  Google Scholar 

  47. Kishkinev, D., Chernetsov, N., Heyers, D. & Mouritsen, H. Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement. PLoS One 8, e65847 (2013).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D. & Mouritsen, H. Eurasian reed warblers compensate for virtual magnetic displacement. Curr. Biol. 25, R822–R824 (2015).

    Article  PubMed  CAS  Google Scholar 

  49. Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171 (2013).

    Article  PubMed  Google Scholar 

  50. Geva-Sagiv, M., Las, L., Yovel, Y. & Ulanovsky, N. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat. Rev. Neurosci. 16, 94–108 (2015).

    Article  PubMed  CAS  Google Scholar 

  51. Sarel, A., Finkelstein, A., Las, L. & Ulanovsky, N. Vectorial representation of spatial goals in the hippocampus of bats. Science 355, 176–180 (2017). This paper discovered a new type of spatial cell in the hippocampus of free-flying Egyptian fruit bats that is essential for navigational tasks—namely cells coding for the direction to a goal relative to an animal’s current heading.

    Article  ADS  PubMed  CAS  Google Scholar 

  52. Stalleicken, J. et al. Do monarch butterflies use polarized skylight for migratory orientation? J. Exp. Biol. 208, 2399–2408 (2005).

    Article  PubMed  Google Scholar 

  53. Heinze, S. & Reppert, S. M. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69, 345–358 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Scholz, A. T., Horrall, R. M., Cooper, J. C. & Hasler, A. D. Imprinting to chemical cues: the basis for home stream selection in salmon. Science 192, 1247–1249 (1976).

    Article  ADS  PubMed  CAS  Google Scholar 

  55. DeBose, J. L. & Nevitt, G. A. The use of odors at different spatial scales: comparing birds with fish. J. Chem. Ecol. 34, 867–881 (2008).

    Article  PubMed  CAS  Google Scholar 

  56. Radford, C. A., Stanley, J. A., Simpson, S. D. & Jeffs, A. G. Juvenile coral reef fish use sound to locate habitats. Coral Reefs 30, 295–305 (2011).

    Article  ADS  Google Scholar 

  57. Mouritsen, H. in Neurosciences—From Molecule to Behavior: A University Textbook (eds Galizia, C. G. & Lledo, P.-M.) 427–443 (Springer, Heidelberg, 2013)

  58. Wiltschko, W. & Wiltschko, R. Magnetic compass of European robins. Science 176, 62–64 (1972).

    Article  ADS  PubMed  MATH  CAS  Google Scholar 

  59. Cochran, W. W., Mouritsen, H. & Wikelski, M. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304, 405–408 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  60. Lohmann, K. J. & Lohmann, C. A light-independent magnetic compass in the leatherback sea turtle. Biol. Bull. 185, 149–151 (1993).

    Article  PubMed  CAS  Google Scholar 

  61. Phillips, J. B. & Borland, S. C. Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359, 142–144 (1992).

    Article  ADS  Google Scholar 

  62. Dennis, T. E., Rayner, M. J. & Walker, M. M. Evidence that pigeons orient to geomagnetic intensity during homing. Proc. R. Soc. Lond. B 274, 1153–1158 (2007).

    Article  Google Scholar 

  63. Guerra, P. A., Gegear, R. J. & Reppert, S. M. A magnetic compass aids monarch butterfly migration. Nat. Commun. 5, 4164 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  64. Komolkin, A. V. et al. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. J. R. Soc. Interface 14, 20161002 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. Begall, S., Malkemper, E. P., Červený, J., Němec, P. & Burda, H. Magnetic alignment in mammals and other animals. Mamm. Biol. 78, 10–20 (2013).

    Article  Google Scholar 

  67. Kirschvink, J. L., Winklhofer, M. & Walker, M. M. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. R. Soc. Interface 7, S179–S191 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Solov’yov, I., Hore, P. J., Ritz, T. & Schulten, K. in Quantum Effects in Biology 218–236 (Cambridge Univ. Press, Cambridge, 2014)

    Book  Google Scholar 

  69. Meister, M. Physical limits to magnetogenetics. eLife 5, e17210 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kattnig, D. R., Sowa, J. K., Solov’yov, I. A. & Hore, P. J. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor. New J. Phys. 18, 063007 (2016).

    Article  ADS  CAS  Google Scholar 

  71. Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016). This tutorial review summarizes in detail all aspects of the radical-pair mechanism and the evidence for and against it as a magnetoreception mechanism, and aims to provide a must-read text for new scientists entering this field by explaining the biological aspects of the mechanism to physicists and chemists and the physicochemical and quantum mechanical aspects to biologists.

    Article  PubMed  CAS  Google Scholar 

  72. Winklhofer, M. & Mouritsen, H. A magnetic protein compass? Preprint at https://www.biorxiv.org/content/early/2016/12/15/094607 (2016).

  73. Paulin, M. G. Electroreception and the compass sense of sharks. J. Theor. Biol. 174, 325–339 (1995).

    Article  Google Scholar 

  74. Rosenblum, B., Jungerman, R. L. & Longfellow, L. in Magnetite Biomineralization and Magnetoreception in Organisms 223–232 (Plenum, New York, 1985)

    Book  Google Scholar 

  75. Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. Winklhofer, M. & Kirschvink, J. L. A quantitative assessment of torque-transducer models for magnetoreception. J. R. Soc. Interface 7, S273–S289 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Shaw, J. et al. Magnetic particle-mediated magnetoreception. J. R. Soc. Interface 12, 20150499 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Treiber, C. D. et al. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484, 367–370 (2012).

    ADS  PubMed  CAS  Google Scholar 

  79. Mouritsen, H. Sensory biology: Search for the compass needles. Nature 484, 320–321 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  80. Eder, S. H. et al. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc. Natl Acad. Sci. USA 109, 12022–12027 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Edelman, N. B. et al. No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc. Natl Acad. Sci. USA 112, 262–267 (2015). This paper, together with Ref. 78, demonstrated that structures previously suggested to be strong candidates as magnetic-particle-based magnetoreceptors were dirt or non-magnetic iron accumulations, emphasizing that, to be considered as serious magnetoreception sensor candidates, magnetic particles must be proven to be located inside cells in exactly the same location and associated with nerve tissue in many individuals of the same species.

    Article  ADS  PubMed  CAS  Google Scholar 

  82. Walker, M. M. et al. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376 (1997).

    Article  ADS  PubMed  CAS  Google Scholar 

  83. Fleissner, G. et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol. 458, 350–360 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. Wu, L.-Q. & Dickman, J. D. Neural correlates of a magnetic sense. Science 336, 1054–1057 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  85. Němec, P., Altmann, J., Marhold, S., Burda, H. & Oelschläger, H. H. A. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368 (2001).

    Article  ADS  PubMed  Google Scholar 

  86. Burger, T. et al. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J. R. Soc. Interface 7, 1275–1292 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. Cadiou, H. & McNaughton, P. A. Avian magnetite-based magnetoreception: a physiologist’s perspective. J. R. Soc. Interface 7, S193–S205 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Stanley, S. A., Sauer, J., Kane, R. S., Dordick, J. S. & Friedman, J. M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Wheeler, M. A. et al. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19, 756–761 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Qin, S. et al. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  92. Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978). This hardcore theoretical physics paper formulated the radical-pair hypothesis of magnetoreception for the first time, and it is now clear that it was decades ahead of its time.

    Article  Google Scholar 

  93. Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008). This paper proved that a radical-pair mechanism is fundamentally able to detect Earth-strength magnetic fields, as the authors synthesized a model compound in which they could directly observe that the photochemistry of a radical-pair mechanism was sensitive to Earth-strength magnetic fields.

    Article  ADS  PubMed  CAS  Google Scholar 

  95. Hiscock, H. G. et al. The quantum needle of the avian magnetic compass. Proc. Natl Acad. Sci. USA 113, 4634–4639 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  96. Solov’yov, I. A., Mouritsen, H. & Schulten, K. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys. J. 99, 40–49 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  97. Schwarze, S. et al. Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination. Sci. Rep. 6, 33805 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  98. Phillips, J. B., Deutschlander, M. E., Freake, M. J. & Borland, S. C. The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J. Exp. Biol. 204, 2543–2552 (2001).

    PubMed  CAS  Google Scholar 

  99. Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. Red light disrupts magnetic orientation of migratory birds. Nature 364, 525–527 (1993).

    Article  ADS  Google Scholar 

  100. Schneider, T., Thalau, H. P., Semm, P. & Wiltschko, W. Melatonin is crucial for the migratory orientation of pied flycatchers Ficedula hypoleuca pallas. J. Exp. Biol. 194, 255–262 (1994).

    PubMed  CAS  Google Scholar 

  101. Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  102. Ritz, T. et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457 (2009).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  103. Engels, S. et al. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356 (2014). This paper demonstrated in a massive series of reproducible, double-blinded experiments that anthropogenic electromagnetic fields in the low megahertz range and with an intensity 1,000 times lower than the current WHO guideline levels disrupt the magnetic compass sense of a night-migratory songbird; this strongly suggests that a quantum mechanical mechanism is responsible for magnetic compass sensing in these birds.

    Article  ADS  PubMed  CAS  Google Scholar 

  104. Kavokin, K. et al. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field. J. R. Soc. Interface 11, 20140451 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Malkemper, E. P. et al. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci. Rep. 5, 9917 (2015).

    Article  CAS  Google Scholar 

  106. Schwarze, S. et al. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front. Behav. Neurosci. 10, 55 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hiscock, H. G., Mouritsen, H., Manolopoulos, D. E. & Hore, P. J. Disruption of magnetic compass orientation in migratory birds by radiofrequency electromagnetic fields. Biophys. J. 113, 1475–1484 (2017).

    Article  ADS  PubMed  CAS  PubMed Central  Google Scholar 

  108. Björn, L. O. Photobiology: The Science of Light and Life (Springer, New York, 2015).

    Book  Google Scholar 

  109. Liedvogel, M. et al. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS One 2, e1106 (2007).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  110. Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  111. Mouritsen, H. et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl Acad. Sci. USA 101, 14294–14299 (2004).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liedvogel, M. & Mouritsen, H. Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know? J. R. Soc. Interface 7, S147–S162 (2010).

    Article  PubMed  CAS  Google Scholar 

  113. Niessner, C. et al. Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS One 6, e20091 (2011).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nießner, C. et al. Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PLoS One 11, e0150377 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Bolte, P. et al. Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS One 11, e0147819 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Günther, A. et al. Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr. Biol. 28, 211–223.e4 (2018). This paper suggests that cryptochrome 4 of night-migratory songbirds is a particularly strong candidate as the light-dependent magnetoreceptive protein because Cry4, in the retina, is exclusively expressed in the outer segments of the double cone and long-wavelength single cone photoreceptor cells, and is more strongly expressed in the migratory season in migratory birds, whereas no seasonal differences are observed in non-migratory birds.

    Article  PubMed  CAS  Google Scholar 

  117. Kutta, R. J., Archipowa, N., Johannissen, L. O., Jones, A. R. & Scrutton, N. S. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 7, 44906 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  118. Worster, S., Mouritsen, H. & Hore, P. J. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. R. Soc. Interface 14, 20170405 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  120. Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  121. Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K. & Jarvis, E. D. Night-vision brain area in migratory songbirds. Proc. Natl Acad. Sci. USA 102, 8339–8344 (2005).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  122. Heyers, D., Manns, M., Luksch, H., Güntürkün, O. & Mouritsen, H. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One 2, e937 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  123. Zapka, M., Heyers, D., Liedvogel, M., Jarvis, E. D. & Mouritsen, H. Night-time neuronal activation of Cluster N in a day- and night-migrating songbird. Eur. J. Neurosci. 32, 619–624 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zapka, M. et al. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461, 1274–1277 (2009). This paper demonstrates that Cluster N processes light-dependent magnetic compass information in night-migratory songbirds, because Cluster N-lesioned birds could still use their sun and star compasses but not their magnetic compass, and because Cluster N is part of the thalamofugal visual pathway in night-migratory songbirds 129.

    Article  ADS  PubMed  CAS  Google Scholar 

  125. Wiltschko, W., Traudt, J., Güntürkün, O., Prior, H. & Wiltschko, R. Lateralization of magnetic compass orientation in a migratory bird. Nature 419, 467–470 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  126. Hein, C. M., Engels, S., Kishkinev, D. & Mouritsen, H. Robins have a magnetic compass in both eyes. Nature 471, E11–E12 (2011).

    Article  PubMed  CAS  Google Scholar 

  127. Wiltschko, W., Traudt, J., Güntürkün, O., Prior, H. & Wiltschko, R. Wiltschko et al. reply. Nature 471, E12–E13 (2011).

    Article  CAS  Google Scholar 

  128. Engels, S., Hein, C. M., Lefeldt, N., Prior, H. & Mouritsen, H. Night-migratory songbirds possess a magnetic compass in both eyes. PLOS One 7, e43271 (2012).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  129. Heyers, D., Zapka, M., Hoffmeister, M., Wild, J. M. & Mouritsen, H. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc. Natl Acad. Sci. USA 107, 9394–9399 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  130. Elbers, D., Bulte, M., Bairlein, F., Mouritsen, H. & Heyers, D. Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe). J. Comp. Physiol. 203, 591–600 (2017).

    Article  CAS  Google Scholar 

  131. Munro, U., Munro, J. A., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Evidence for a magnetite-based navigational ‘map’ in birds. Naturwissenschaften 84, 26–28 (1997).

    Article  ADS  CAS  Google Scholar 

  132. Wiltschko, W., Wiltschko, R. & Keeton, W. T. Effects of a ‘permanent’ clock-shift on the orientation of young homing pigeons. Behav. Ecol. Sociobiol. 1, 229–243 (1976).

    Article  Google Scholar 

  133. Schmidt-Koenig, K., Ganzhorn, J. U. & Ranvaud, R. in Orientation in Birds 1–15 (Birkhäuser, Basel, 1991).

    Book  Google Scholar 

  134. Emlen, S. T. The stellar-orientation system of a migratory bird. Sci. Am. 233, 102–111 (1975).

    Article  PubMed  CAS  Google Scholar 

  135. Heinze, S. & Homberg, U. Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315, 995–997 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  136. Wiltschko, R., Walker, M. & Wiltschko, W. Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth? J. Exp. Biol. 203, 889–894 (2000).

    PubMed  CAS  Google Scholar 

  137. Horváth, G. (Ed.) Polarized Light and Polarization Vision in Animal Sciences (Springer, Berlin, 2014).

  138. Stalleicken, J., Labhart, T. & Mouritsen, H. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. 192, 321–331 (2006).

    Article  Google Scholar 

  139. Kamermans, M. & Hawryshyn, C. Teleost polarization vision: how it might work and what it might be good for. Phil. Trans. R. Soc. Lond. B 366, 742–756 (2011).

    Article  Google Scholar 

  140. Wiltschko, W., Daum, P., Fergenbauer-Kimmel, A. & Wiltschko, R. The development of the star compass in garden warblers, Sylvia borin. Ethology 74, 285–292 (1987).

    Article  Google Scholar 

  141. Michalik, A., Alert, B., Engels, S., Lefeldt, N. & Mouritsen, H. Star compass learning: how long does it take? J. Ornithol. 155, 225–234 (2014).

    Article  Google Scholar 

  142. Mouritsen, H. & Larsen, O. N. Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass. J. Exp. Biol. 204, 3855–3865 (2001).

    PubMed  CAS  Google Scholar 

  143. Alert, B., Michalik, A., Helduser, S., Mouritsen, H. & Güntürkün, O. Perceptual strategies of pigeons to detect a rotational centre—a hint for star compass learning? PLoS One 10, e0119919 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Dacke, M., Baird, E., Byrne, M., Scholtz, C. H. & Warrant, E. J. Dung beetles use the Milky Way for orientation. Curr. Biol. 23, 298–300 (2013).

    Article  PubMed  CAS  Google Scholar 

  145. Zufall, F. & Munger, S. Chemosensory Transduction: The Detection of Odors, Tastes, and Other Chemostimuli (Academic, London, 2016).

    Google Scholar 

  146. Allison, J. D. & Cardé, R. T. Pheromone Communication in Moths: Evolution, Behavior, and Application (Univ. California Press, Oakland, 2016).

    Google Scholar 

  147. Jorge, P. E., Marques, P. A. & Phillips, J. B. Activational effects of odours on avian navigation. Proc. R. Soc. Lond. B 277, 45–49 (2010).

    Article  Google Scholar 

  148. Wallraff, H. G. & Andreae, M. O. Spatial gradients in ratios of atmospheric trace gases: a study stimulated by experiments on bird navigation. Tellus B Chem. Phys. Meterol. 52, 1138–1157 (2000).

    Article  ADS  Google Scholar 

  149. Kullberg, C., Henshaw, I., Jakobsson, S., Johansson, P. & Fransson, T. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc. R. Soc. Lond. B 274, 2145–2151 (2007).

    Article  Google Scholar 

  150. Schmitz, H. & Bleckmann, H. The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). J. Comp. Physiol. A 182, 647–657 (1998).

    Article  Google Scholar 

  151. Hagstrum, J. T. Infrasound and the avian navigational map. J. Exp. Biol. 203, 1103–1111 (2000).

    PubMed  CAS  Google Scholar 

  152. Reynolds, A. M., Reynolds, D. R., Sane, S. P., Hu, G. & Chapman, J. W. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies. Phil. Trans. R. Soc. Lond. B 371, 20150392 (2016).

    Article  Google Scholar 

  153. Sjöberg, S. & Muheim, R. A new view on an old debate: type of cue-conflict manipulation and availability of stars can explain the discrepancies between cue-calibration experiments with migratory songbirds. Front. Behav. Neurosci. 10, 29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Åkesson, S. & Bianco, G. Route simulations, compass mechanisms and long-distance migration flights in birds. J. Comp. Physiol. A 203, 475–490 (2017).

    Article  Google Scholar 

  155. Chernetsov, N., Kishkinev, D., Kosarev, V. & Bolshakov, C. V. Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J. Exp. Biol. 214, 2540–2543 (2011).

    Article  PubMed  Google Scholar 

  156. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  157. Cheeseman, J. F. et al. Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc. Natl Acad. Sci. USA 111, 8949–8954 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to many of the key scientists working in the field of animal navigation and magnetoreception, including all my colleagues and associated members of the proposed collaborative research centre SFB 1372, for inspiration and discussions, for commenting on earlier drafts of this manuscript, and for providing valuable input to various sections of the review. Funding was provided by the Air Force Office of Scientific Research (Air Force Material Command, USAF award no. FA9550-14-1-0095 and FA9550-14-1-0242), the DFG (Graduiertenkolleg 1885, SFB 1372), the ‘Ministerium für Wissenschaft und Kultur’ (Landesgraduiertenkolleg Nano-Energieforschung), and the University of Oldenburg.

Reviewer information

Nature thanks S. Åkesson, J. Chapman and J. Phillips for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Mouritsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018). https://doi.org/10.1038/s41586-018-0176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0176-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing