Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antarctic and global climate history viewed from ice cores

Abstract

A growing network of ice cores reveals the past 800,000 years of Antarctic climate and atmospheric composition. The data show tight links among greenhouse gases, aerosols and global climate on many timescales, demonstrate connections between Antarctica and distant locations, and reveal the extraordinary differences between the composition of our present atmosphere and its natural range of variability as revealed in the ice core record. Further coring in extremely challenging locations is now being planned, with the goal of finding older ice and resolving the mechanisms underlying the shift of glacial cycles from 40,000-year to 100,000-year cycles about a million years ago, one of the great mysteries of climate science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Data covering the last 800,000 years from long Antarctic ice core records, and the benthic isotope stack, a proxy for global glacial–interglacial cycles, with upward direction corresponding to warm interglacial conditions.
Fig. 2: Abrupt climate variability of the last Ice Age.
Fig. 3: Dependence of millennial-scale variability on the background climate state.

Similar content being viewed by others

References

  1. Galeotti, S. et al. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science 352, 76–80 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Flower, B. P. & Kennett, J. P. Relations between Monterey Formation deposition and middle Miocene global cooling: Naples Beach section. Calif. Geol. 21, 877–880 (1993).

    Article  CAS  Google Scholar 

  3. Higgins, J. A. et al. Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proc. Natl Acad. Sci. USA 112, 6887–6891 (2015). This study reports the first greenhouse gas data from ice older than 800,000 years.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jouzel, J. et al. Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. Oceans 102, 26471–26487 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Wolff, E., Fischer, H. & Röthlisberger, R. Glacial terminations as southern warmings without northern control. Nat. Geosci. 2, 206–209 (2009).

    Article  ADS  CAS  Google Scholar 

  6. Schüpbach, S. et al. High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core. Clim. Past 9, 2789–2807 (2013).

    Article  Google Scholar 

  7. McConnell, J. R. et al. Antarctic-wide array of high-resolution ice core records reveals pervasive lead pollution began in 1889 and persists today. Sci. Rep. 4, 5848 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brook, E. J., Kurz, M. D. & Curtice, J. Flux and size fractionation of 3He in interplanetary dust from Antarctic ice core samples. Earth Planet. Sci. Lett. 286, 565–569 (2009).

    Article  ADS  CAS  Google Scholar 

  9. Van Ommen, T. D., Morgan, V. & Curran, M. A. Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica. Ann. Glaciol. 39, 359–365 (2004).

    Article  ADS  Google Scholar 

  10. Cuffey, K. M. et al. Deglacial temperature history of West Antarctica. Proc. Natl Acad. Sci. USA 113, 14249–14254 (2016). This work provides the first accurate borehole-based temperature reconstruction from Antarctica, indicating a glacial–interglacial temperature change of 11.3 ± 1.8 °C.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007). This paper reports the full 800,000-year temperature reconstruction from the EPICA Dome C ice core, the longest such record.

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Dome Fuji Project Members. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Sci. Adv. 3, e1600446 (2017).

    Article  ADS  CAS  Google Scholar 

  13. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).

    Google Scholar 

  15. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nat. Geosci. 484, 49–55 (2012).

    CAS  Google Scholar 

  16. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Imbrie, J. et al. On the structure and origin of major glaciation cycles. Paleoceanogr. Paleoclimatol. 8, 699–735 (1993).

    Google Scholar 

  18. Raymo, M. The timing of major climate terminations. Paleoceanogr. Paleoclimatol. 12, 577–585 (1997).

    Article  ADS  Google Scholar 

  19. Paillard, D. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391, 378–381 (1998).

    Article  ADS  Google Scholar 

  20. Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Tzedakis, P., Crucifix, M., Mitsui, T. & Wolff, E. W. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427–432 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Bintanja, R. & Van de Wal, R. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454, 869–872 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  23. Abe-Ouchi, A. et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–193 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Ganopolski, A. & Brovkin, V. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Clim. Past 13, 1695–1716 (2017).

    Article  Google Scholar 

  25. Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Quat. Sci. Rev. 9, 305–341 (1990).

    Article  ADS  Google Scholar 

  26. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007). This study links variations in the O2/N2 ratio of trapped air in the Dome Fuji ice core to local summer insolation, thereby dating the core and showing that glacial terminations in Antarctica closely followed Northern Hemisphere summer insolation.

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanogr. Paleoclimatol. 18, https://doi.org/10.1029/2003PA000920 (2003).

  28. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nat. Geosci. 1, 787–792 (2008).

    Article  ADS  CAS  Google Scholar 

  29. WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440–444 (2013).

    Article  ADS  CAS  Google Scholar 

  30. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008). This paper reports the full 800,000-year atmospheric methane record from the EPICA Dome C ice core, showing variations on orbital and millennial timescales.

    Article  ADS  PubMed  CAS  Google Scholar 

  31. Yin, Q. Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature 494, 222–225 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006). Chemical measurements from the EPICA Dome C ice core indicate that both the flux of iron (from wind-blown dust) and sea ice extent increased during glacial periods over the past 740,000 years.

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Lambert, F. et al. Dust–climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Fischer, H., Siggaard-Andersen, M. L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys. 45, 1–26 (2007).

    Article  CAS  Google Scholar 

  35. Martínez-Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanogr. Paleoclimatol. 24, PA1207 (2009).

    Google Scholar 

  36. Jaccard, S. et al. Two modes of change in Southern Ocean productivity over the past million years. Science 339, 1419–1423 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  37. Abram, N. J., Wolff, E. W. & Curran, M. A. A review of sea ice proxy information from polar ice cores. Quat. Sci. Rev. 79, 168–183 (2013).

    Article  ADS  Google Scholar 

  38. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008). This paper completed the 800,000-year-long EPICA Dome C CO 2 record shown in Fig. 1, demonstrating the variation of CO 2 maxima during interglacial times.

    Article  ADS  PubMed  CAS  Google Scholar 

  39. Schilt, A. et al. Glacial-interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat. Sci. Rev. 29, 182–192 (2010).

    Article  ADS  Google Scholar 

  40. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  ADS  PubMed  CAS  Google Scholar 

  41. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  42. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Article  ADS  PubMed  CAS  Google Scholar 

  43. Skinner, L., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  44. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  45. Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanogr. Paleoclimatol. 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  46. Franois, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article  ADS  Google Scholar 

  47. Anderson, R. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  48. Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  49. Galbraith, E. & Eggleston, S. A lower limit to atmospheric CO2 concentrations over the past 800,000 years. Nat. Geosci. 10, 295–298 (2017).

    Article  ADS  CAS  Google Scholar 

  50. Brook, E. J., Sowers, T. & Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1091 (1996).

    Article  ADS  PubMed  CAS  Google Scholar 

  51. Petrenko, V. V. et al. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548, 443–446 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  52. Sowers, T. Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311, 838–840 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Bock, M. et al. Hydrogen isotopes preclude marine hydrate CH4 emissions at the onset of Dansgaard-Oeschger events. Science 328, 1686–1689 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  54. Levine, J. et al. Reconciling the changes in atmospheric methane sources and sinks between the Last Glacial Maximum and the pre-industrial era. Geophys. Res. Lett. 38, L23804 (2011).

    ADS  Google Scholar 

  55. Murray, L. T. et al. Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum. Atmos. Chem. Phys. 14, 3589–3622 (2014).

    Article  ADS  CAS  Google Scholar 

  56. Fischer, H. et al. Changing boreal methane sources and constant biomass burning during the last termination. Nature 452, 864–867 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  57. Brook, E., Archer, D., Dlugokencky, E., Frolking, S. & Lawrence, D. in Abrupt Climate Change. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research (ed. McGeehin, J. P.) Ch. 5, 163–201 (US Geological Survey, Reston, 2008).

  58. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  59. Schilt, A. et al. Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature 516, 234–237 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  60. Severinghaus, J. P., Beaudette, R., Headly, M. A., Taylor, K. & Brook, E. J. Oxygen-18 of O2 records the impact of abrupt climate change on the terrestrial biosphere. Science 324, 1431–1434 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  61. Stolper, D., Bender, M., Dreyfus, G., Yan, Y. & Higgins, J. A Pleistocene ice core record of atmospheric O2 concentrations. Science 353, 1427–1430 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  62. Bender, M. L., Barnett, B., Dreyfus, G., Jouzel, J. & Porcelli, D. The contemporary degassing rate of 40Ar from the solid Earth. Proc. Natl Acad. Sci. USA 105, 8232–8237 (2008). Precise measurements of argon isotope ratios in trapped air are used in this study to develop a chronometer for old ice based on the accumulation of 40Ar in the atmosphere from 40K decay in the crust.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  63. Headly, M. A. & Severinghaus, J. P. A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. J. Geophys. Res. 112, D19105 (2007).

    Article  ADS  CAS  Google Scholar 

  64. Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018). Measurements of Kr, Xe, Ar, and N are used in this study to make the first precise estimates of changes in global deep-ocean temperature across the last glacial–interglacial transition, showing that these are mostly synchronous with changes in Antarctic air temperature and atmospheric CO 2 .

    Article  ADS  PubMed  CAS  Google Scholar 

  65. Grootes, P., Stuiver, M., White, J., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenlandice cores. Nature 366, 552–554 (1993).

    Article  ADS  CAS  Google Scholar 

  66. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993). This paper reports the first detailed record of abrupt changes in temperature in Greenland.

    Article  ADS  Google Scholar 

  67. Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  68. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001). This paper used methane variations to make a common timescale for ice cores in Greenland and Antarctica, and showed the bi-polar seesaw pattern for the larger climate variations during the last ice age.

    Article  ADS  PubMed  CAS  Google Scholar 

  69. Brook, E. J. et al. Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quat. Sci. Rev. 24, 1333–1343 (2005).

    Article  ADS  Google Scholar 

  70. EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006). This paper demonstrated that all abrupt climate events in the Greenland record have counterparts in Antarctica.

    Article  ADS  CAS  Google Scholar 

  71. Stenni, B. et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat. Geosci. 4, 46–49 (2011).

    Article  ADS  CAS  Google Scholar 

  72. Landais, A. et al. A review of the bipolar see–saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quat. Sci. Rev. 114, 18–32 (2015).

    Article  ADS  Google Scholar 

  73. WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661–665 (2015). Using very precise chronological constraints, this paper demonstrated that millennial-scale warming and cooling in Antarctica lagged counterpart events in Greenland by about 200 years on average.

    Article  ADS  CAS  Google Scholar 

  74. Bender, M. et al. Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663–666 (1994).

    Article  ADS  CAS  Google Scholar 

  75. Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanogr. Paleoclimatol. 13, 119–121 (1998).

    Google Scholar 

  76. Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002).

    Article  Google Scholar 

  77. Schmittner, A., Saenko, O. & Weaver, A. Coupling of the hemispheres in observations and simulations of glacial climate change. Quat. Sci. Rev. 22, 659–671 (2003).

    Article  ADS  Google Scholar 

  78. Stouffer, R. J. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).

    Article  ADS  Google Scholar 

  79. Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard-Oeschger events. Nat. Geosci. 10, 36–40 (2017).

    Article  ADS  CAS  Google Scholar 

  80. Masson-Delmotte, V. et al. Abrupt change of Antarctic moisture origin at the end of Termination II. Proc. Natl Acad. Sci. USA 107, 12091–12094 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M. & Fischer, H. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Clim. Past 8, 609–623 (2012).

    Article  Google Scholar 

  82. Menviel, L., England, M. H., Meissner, K., Mouchet, A. & Yu, J. Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanogr. Paleoclimatol. 29, 58–70 (2014).

    Article  ADS  Google Scholar 

  83. Ahn, J., Brook, E. J., Schmittner, A. & Kreutz, K. Abrupt change in atmospheric CO2 during the last ice age. Geophys. Res. Lett. 39, GL053018 (2012).

    Article  CAS  Google Scholar 

  84. Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014). The most detailed CO 2 record for the deglaciation to date is reported from the WAIS Divide ice core in this paper, showing the tight coupling of CO 2 and Antarctic climate (Box 2).

    Article  ADS  PubMed  CAS  Google Scholar 

  85. Rhodes, R. H. et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 348, 1016–1019 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  86. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  87. Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013).

    Article  Google Scholar 

  88. Bazin, L. et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past Discuss. 8, 5963–6009 (2012).

    Article  ADS  Google Scholar 

  89. Buizert, C. & Schmittner, A. Southern Ocean control of glacial AMOC stability and Dansgaard-Oeschger interstadial duration. Paleoceanogr. Paleoclimatol. 30, 1595–1612 (2015).

    Article  ADS  Google Scholar 

  90. McManus, J. F., Oppo, D. W. & Cullen, J. L. A. 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    Article  ADS  PubMed  CAS  Google Scholar 

  91. Schulz, M., Berger, W. H., Sarnthein, M. & Grootes, P. M. Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys. Res. Lett. 26, 3385–3388 (1999).

    Article  ADS  CAS  Google Scholar 

  92. Muglia, J. & Schmittner, A. Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett. 42, 9862–9868 (2015).

    Article  ADS  Google Scholar 

  93. Oka, A., Hasumi, H. & Abe-Ouchi, A. The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys. Res. Lett. 39, GL051421 (2012).

    Article  Google Scholar 

  94. Wang, Z. & Mysak, L. A. Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanogr. Paleoclimatol. 21, PA001238 (2006).

    Google Scholar 

  95. Ahn, J. & Brook, E. J. Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 322, 83–85 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  96. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  97. Dlugokencky, E. Trends in Atmospheric Methane. http://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/ (Earth System Research Laboratory, 2018).

  98. Toggweiler, J. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  99. Fischer, H. et al. Where to find 1.5 million yr old ice for the IPICS “Oldest-Ice” ice core. Clim. Past 9, 2489–2505 (2013).

    Article  Google Scholar 

  100. Raymo, M., Lisiecki, L. & Nisancioglu, K. H. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313, 492–495 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  101. Schwander, J., Marending, S., Stocker, T. & Fischer, H. RADIX: a minimal-resources rapid-access drilling system. Ann. Glaciol. 55, 34–38 (2014).

    Article  ADS  Google Scholar 

  102. Alemany, O. et al. The SUBGLACIOR drilling probe: concept and design. Ann. Glaciol. 55, 233–242 (2014).

    Article  ADS  Google Scholar 

  103. Goodge, J. W. & Severinghaus, J. P. Rapid Access Ice Drill: a new tool for exploration of the deep Antarctic ice sheets and subglacial geology. J. Glaciol. 62, 1049–1064 (2016).

    Article  ADS  Google Scholar 

  104. Yan, Y. N. J. et al. 2.7-Million-Year-Old Ice from Allan Hills Blue Ice Areas, East Antarctica Reveals Climate Snapshots Since Early Pleistocene. Goldschmidt Conf. (Paris, France) 4359, https://goldschmidtabstracts.info/2017/4359.pdf (European Association of Geochemistry and the Geochemical Society, 2007).

  105. Masson-Delmotte, V. et al. A comparison of the present and last interglacial periods in six Antarctic ice cores. Clim. Past 7, 397–423 (2011).

    Article  Google Scholar 

  106. Pages 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–350 (2013).

    Article  ADS  CAS  Google Scholar 

  107. Steig, E. J. et al. Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate. Geophys. Res. Lett. 42, 4862–4868 (2015).

    Article  ADS  Google Scholar 

  108. Korotkikh, E. V. et al. The last interglacial as represented in the glaciochemical record from Mount Moulton Blue Ice Area, West Antarctica. Quat. Sci. Rev. 30, 1940–1947 (2011).

    Article  ADS  Google Scholar 

  109. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    Article  ADS  Google Scholar 

  110. Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  111. Gow, A. J., Ueda, H. T. & Garfield, D. E. Antarctic ice sheet: preliminary results of first core hole to bedrock. Science 161, 1011–1013 (1968).

    Article  ADS  PubMed  CAS  Google Scholar 

  112. EPICA Community Members. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Article  CAS  Google Scholar 

  113. Slawny, K. R. et al. Production drilling at WAIS Divide. Ann. Glaciol. 55, 147–155 (2014).

    Article  ADS  Google Scholar 

  114. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. CO2 record in the Byrd ice core 50,000–5,000 years BP. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  115. Barnola, J. M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. CO2-climate relationship as deduced from the Vostok Ice Core—a reexamination based on new measurements and on a reevaluation of the air dating. Tellus B 43, 83–90 (1991).

    Article  ADS  Google Scholar 

  116. Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. & Deck, B. Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, 1712–1714 (1999).

    Article  ADS  PubMed  CAS  Google Scholar 

  117. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  118. Pedro, J. B., Rasmussen, S. O. & van Ommen, T. D. Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation. Clim. Past 8, 1213–1221 (2012).

    Article  Google Scholar 

  119. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Pedro for comments that improved the manuscript. The US National Science Foundation and US Antarctic Program have provided support for our research and acquisition of Antarctic ice cores that we have studied; we thank them, as well as numerous international agencies and colleagues who have contributed to ice core science.

Reviewer information

Nature thanks J. Pedro and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Edward J. Brook.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brook, E.J., Buizert, C. Antarctic and global climate history viewed from ice cores. Nature 558, 200–208 (2018). https://doi.org/10.1038/s41586-018-0172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0172-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing