Trends and connections across the Antarctic cryosphere

Abstract

Satellite observations have transformed our understanding of the Antarctic cryosphere. The continent holds the vast majority of Earth’s fresh water, and blankets swathes of the Southern Hemisphere in ice. Reductions in the thickness and extent of floating ice shelves have disturbed inland ice, triggering retreat, acceleration and drawdown of marine-terminating glaciers. The waxing and waning of Antarctic sea ice is one of Earth’s greatest seasonal habitat changes, and although the maximum extent of the sea ice has increased modestly since the 1970s, inter-annual variability is high, and there is evidence of longer-term decline in its extent.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Average annual motion of the Antarctic ice sheet and ice shelves, and of the surrounding sea ice in winter.
Fig. 2: Average trend in the elevation and thickness of Antarctic grounded ice and ice shelves, respectively, determined between 1992 and 2017 north of 81.5° S (dashed grey circle), and between 2010 and 2017 elsewhere.
Fig. 3: Temporal changes in the location of ice shelf barriers at the Antarctic Peninsula.
Fig. 4: Sea ice in the Weddell Sea in early November 2017, based on a composite of Sentinel-1 synthetic aperture radar imagery, MODIS optical satellite imagery and ASCAT scatterometer data.
Fig. 5: Schematic of a sea ice floe as observed by CryoSat-2 and AltiKa.

References

  1. 1.

    Parkinson, C. L. Global sea ice coverage from satellite data: annual cycle and 35-yr trends. J. Clim. 27, 9377–9382 (2014). This paper is a recent assessment of multi-decadal trends in global sea ice extent as derived from satellite passive microwave radiometer data, confirming that the losses in ice extent in the Arctic Ocean far exceed gains in the Southern Ocean.

    ADS  Article  Google Scholar 

  2. 2.

    Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland Drainage Systems (GSFC Cryospheric Sciences Laboratory, 2012).

  3. 3.

    Shepherd, A. et al. Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL042496 (2010).

  4. 4.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013). This paper presents models of the Antarctic ice sheet and ice shelf thickness, determined from a compilation of airborne and satellite remote sensing, that are widely used across the glaciological community and beyond.

    ADS  Article  Google Scholar 

  5. 5.

    Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A. & Frolich, R. M. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38, 375–387 (1992).

    ADS  Article  Google Scholar 

  6. 6.

    Massom, R. A. & Stammerjohn, S. E. Antarctic sea ice change and variability—physical and ecological implications. Polar Sci. 4, 149–186 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Worby, A. P. et al. Thickness distribution of Antarctic sea ice. J. Geophys. Res. Oceans 113, https://doi.org/10.1029/2007JC004254 (2008).

  8. 8.

    Zwally, H. J., Parkinson, C. L. & Comiso, J. C. Variability of Antarctic sea ice and changes in carbon dioxide. Science 220, 1005–1012 (1983). As an early application of satellite radar imagery for tracking trends in the extent of sea ice in the Southern Hemisphere, this paper is a seminal study.

    ADS  PubMed  Article  CAS  Google Scholar 

  9. 9.

    De Santis, A., Maier, E., Gomez, R. & Gonzalez, I. Antarctica, 1979–2016 sea ice extent: total versus regional trends, anomalies, and correlation with climatological variables. Int. J. Remote Sens. 38, 7566–7584 (2017).

    Article  Google Scholar 

  10. 10.

    The IMBIE Team. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, https://doi.org/10.1038/s41586-018-0179-y (2008). This large collaborative work presents an updated comparison and synthesis of many individual estimates of Antarctic ice sheet mass balance derived from satellite observations to deliver a single result for use by the wider scientific community.

  11. 11.

    Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015). A multi-mission record (1994 to 2012) of ice-shelf surface height from satellite radar altimetry showed accelerated loss of volume of Antarctica’s ice shelves, with early increases in East Antarctica, probably due to accumulation, and substantial losses in West Antarctica, where some ice shelves thinned by up to 18% over the 18 years.

    ADS  PubMed  Article  CAS  Google Scholar 

  12. 12.

    Shepherd, A., Wingham, D. & Rignot, E. Warm ocean is eroding West Antarctic Ice Sheet. Geophys. Res. Lett. 31, 1–4 (2004).

    Article  Google Scholar 

  13. 13.

    Shepherd, A., Wingham, D., Payne, T. & Skvarca, P. Larsen Ice Shelf has progressively thinned. Science 302, 856–859 (2003). This paper describes the first application of satellite measurements for detecting trends in the thickness of Antarctic ice shelves, providing direct observations of contemporary imbalance and evidence that ocean-driven melting is a destabilizing force.

    ADS  PubMed  Article  CAS  Google Scholar 

  14. 14.

    Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

    ADS  Article  CAS  Google Scholar 

  16. 16.

    Drewry, D. J. Antarctica: Glaciological and Geophysical Folio (ed. Drewry, D. J.) (Scott Polar Research Institute, University of Cambridge, Cambridge, 1983).

  17. 17.

    Bamber, J. L., Vaughan, D. G. & Joughin, I. Widespread complex flow in the interior of the Antarctic Ice Sheet. Science 287, 1248–1250 (2000). This study was the first to apply the balance-velocity technique to map the continental pattern of ice flow, revealing the intricate nature of the ice sheet glaciers.

    ADS  PubMed  Article  CAS  Google Scholar 

  18. 18.

    Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C. & Bindschadler, R. A. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 42, 177–186 (1992).

    ADS  Article  Google Scholar 

  19. 19.

    Goldstein, R. M., Engelhardt, H., Kamb, B. & Frolich, R. M. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525–1530 (1993). This ground-breaking study was the first to explain how the innovative technique of satellite radar interferometry could be applied to glaciology, introducing methods for tracking glacier topography and motion, and the location of ice stream grounding lines.

    ADS  PubMed  Article  CAS  Google Scholar 

  20. 20.

    Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic Ice Sheet. Science 333, 1427–1430 (2011).

    ADS  PubMed  Article  CAS  Google Scholar 

  21. 21.

    Joughin, I., Rignot, E., Rosanova, C. E., Lucchitta, B. K. & Bohlander, J. Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 30, https://doi.org/10.1029/2003GL017609 (2003).

  22. 22.

    Rignot, E. Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica. J. Glaciol. 47, 213–222 (2001).

    ADS  Article  Google Scholar 

  23. 23.

    Joughin, I., Tulaczyk, S., Bindschadler, R. & Price, S. F. Changes in west Antarctic ice stream velocities: observation and analysis. J. Geophys. Res. Solid Earth 107, https://doi.org/10.1029/2001JB001029 (2002).

  24. 24.

    Rignot, E. et al. Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophys. Res. Lett. 32, https://doi.org/10.1029/2004GL021947 (2005).

  25. 25.

    Rott, H., Müller, F., Nagler, T. & Floricioiu, D. The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula. Cryosphere 5, 125–134 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large east Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1, 827–831 (2008).

    ADS  Article  CAS  Google Scholar 

  28. 28.

    Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci. 1, 106–110 (2008).

    ADS  Article  CAS  Google Scholar 

  30. 30.

    Zwally, H. J., Brenner, A. C., Major, J. A., Bindschadler, R. A. & Marsh, J. G. Growth of Greenland ice sheet: measurement. Science 246, 1587–1589 (1989).

    ADS  PubMed  Article  CAS  Google Scholar 

  31. 31.

    Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J. & Shum, C. K. Antarctic elevation change from 1992 to 1996. Science 282, 456–458 (1998).

    ADS  PubMed  Article  CAS  Google Scholar 

  32. 32.

    Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    ADS  PubMed  Article  CAS  Google Scholar 

  33. 33.

    Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  34. 34.

    Luthcke, S. B. et al. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 59, 613–631 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Briggs, K. et al. Charting ice-sheet contributions to global sea-level rise. Eos 97, https://doi.org/10.1029/2016EO055719 (2016).

  36. 36.

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  37. 37.

    Wingham, D. J., Wallis, D. W. & Shepherd, A. Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL039126 (2009).

  38. 38.

    Sutterley, T. C. et al. Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophys. Res. Lett. 41, 8421–8428 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Shepherd, A., Wingham, D. J., Mansley, J. A. D. & Corr, H. F. J. Inland thinning of Pine Island Glacier, West Antarctica. Science 291, 862–864 (2001).

    ADS  PubMed  Article  CAS  Google Scholar 

  40. 40.

    Whillans, I. M., Bolzan, J. & Shabtaie, S. Velocity of ice streams B and C, Antarctica. J. Geophys. Res. 92, 8895–8902 (1987).

    ADS  Article  Google Scholar 

  41. 41.

    Retzlaff, R. & Bentley, C. R. Timing of stagnation of ice stream C, West Antarctica, from short- pulse radar studies of buried surface crevasses. J. Glaciol. 39, 553–561 (1993).

    ADS  Article  Google Scholar 

  42. 42.

    Shepherd, A., Wingham, D. J. & Mansley, J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett. 29, https://doi.org/10.1029/2001GL014183 (2002).

  43. 43.

    Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 519–523 (2011).

    ADS  Article  CAS  Google Scholar 

  45. 45.

    Siegert, M. J., Carter, S., Tabacco, I., Popov, S. & Blankenship, D. D. A revised inventory of Antarctic subglacial lakes. Antarct. Sci. 17, 453–460 (2005).

    ADS  Article  Google Scholar 

  46. 46.

    Gray, L. et al. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, https://doi.org/10.1029/2004GL021387 (2005). This study was the first to detect the surface expression of water transport beneath the Antarctic ice sheet, a new approach for studying the hydrology of the continent’s subglacial lakes.

  47. 47.

    Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. Rapid discharge connects Antarctic subglacial lakes. Nature 440, 1033–1036 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  48. 48.

    Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544–1548 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  49. 49.

    Smith, B. E., Helen, A. F., Ian, R. J. & Tulaczyk, S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol. 55, 573–595 (2009).

    ADS  Article  Google Scholar 

  50. 50.

    Bell, R. E. The role of subglacial water in ice-sheet mass balance. Nat. Geosci. 1, 297–304 (2008).

    ADS  Article  CAS  Google Scholar 

  51. 51.

    Siegfried, M. R. & Fricker, H. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. https://doi.org/10.1017/aog.2017.36 (2018).

  52. 52.

    Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A. & Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 445, 904–907 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  53. 53.

    Schaffer, J. et al. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 8, 543–557 (2016).

    ADS  Article  Google Scholar 

  54. 54.

    Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    ADS  Article  Google Scholar 

  55. 55.

    Fahnestock, M. A., Scambos, T. A., Bindschadler, R. A. & Kvaran, G. A millennium of variable ice flow recorded by the Ross ice shelf, Antarctica. J. Glaciol. 46, 652–664 (2000).

    ADS  Article  Google Scholar 

  56. 56.

    Domack, E. et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436, 681–685 (2005).

    ADS  PubMed  Article  CAS  Google Scholar 

  57. 57.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).

    Article  Google Scholar 

  58. 58.

    Griggs, J. A. & Bamber, J. L. Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol. 57, 485–498 (2011).

    ADS  Article  Google Scholar 

  59. 59.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    ADS  PubMed  Article  CAS  Google Scholar 

  60. 60.

    Helsen, M. M. et al. Elevation changes in Antarctica mainly determined by accumulation variability. Science 320, 1626–1629 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  61. 61.

    Rosanova, C. E., Lucchitta, B. K. & Ferrigno, J. G. Velocities of Thwaites Glacier and smaller glaciers along the Marie Byrd Land coast, West Antarctica. Ann. Glaciol. 27, 47–53 (1998).

    ADS  Article  Google Scholar 

  62. 62.

    Rack, W., Doake, C. S. M., Rott, H., Siegel, A. & Skvarca, P. Interferometric analysis of the deformation pattern of the northern Larsen Ice Shelf, Antarctic Peninsula, compared to field measurement and numerical modeling. Ann. Glaciol. 31, 205–210 (2000).

    ADS  Article  Google Scholar 

  63. 63.

    Rignot, E. & Jacobs, S. S. Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines. Science 296, 2020–2023 (2002). In reporting satellite-derived estimates of ice shelf basal melting, this study was among the first to assess ice–ocean interactions and to highlight regional variations in ocean forcing.

    ADS  PubMed  Article  CAS  Google Scholar 

  64. 64.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  65. 65.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  66. 66.

    Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  67. 67.

    Jacobs, S. S., Hellmer, H. H. & Jenkins, A. Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett. 23, 957–960 (1996).

    ADS  Article  Google Scholar 

  68. 68.

    Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).

    ADS  Article  CAS  Google Scholar 

  69. 69.

    Humbert, A. & Braun, M. The Wilkins Ice Shelf, Antarctica: break-up along failure zones. J. Glaciol. 54, 943–944 (2008).

    ADS  Article  Google Scholar 

  70. 70.

    Cooper, A. P. R. Historical observations of Prince Gustav ice shelf. Polar Rec. 33, 285–294 (1997).

    Article  Google Scholar 

  71. 71.

    Skvarca, P. Fast recession of the northern Larsen Ice Shelf monitored by space images. Ann. Glaciol. 17, 317–321 (1993).

    ADS  Article  Google Scholar 

  72. 72.

    Doake, C. S. M. & Vaughan, D. G. Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature 350, 328–330 (1991).

    ADS  Article  Google Scholar 

  73. 73.

    Hogg, A. E. & Gudmundsson, G. H. Impacts of the Larsen-C Ice Shelf calving event. Nat. Clim. Change 7, 540–542 (2017).

    ADS  Article  Google Scholar 

  74. 74.

    Pudsey, C. J. & Evans, J. First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat. Geology 29, 787–790 (2001).

    ADS  Article  Google Scholar 

  75. 75.

    van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL023247 (2005).

  76. 76.

    Scambos, T., Hulbe, C. & Fahnestock, M. A. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarct. Res. Ser. 76, 335–347 (2003).

    Google Scholar 

  77. 77.

    Vieli, A., Payne, A. J., Shepherd, A. & Du, Z. Causes of pre-collapse changes of the Larsen B ice shelf: numerical modelling and assimilation of satellite observations. Earth Planet. Sci. Lett. 259, 297–306 (2007).

    ADS  Article  CAS  Google Scholar 

  78. 78.

    Liu, Y. et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc. Natl Acad. Sci. USA 112, 3263–3268 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Fricker, H. A. & Padman, L. Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. J. Geophys. Res. Oceans 117, https://doi.org/10.1029/2011JC007126 (2012).

  80. 80.

    Adusumilli, S. et al. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophys. Res. Lett. https://doi.org/10.1002/2017GL076652 (in the press).

  81. 81.

    Royston, S. & Gudmundsson, G. H. Changes in ice-shelf buttressing following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting impact on tributaries. J. Glaciol. 62, 905–911 (2016).

    ADS  Article  Google Scholar 

  82. 82.

    Phillips, H. A. & Laxon, S. W. Tracking of Antarctic tabular icebergs using passive microwave radiometry. Int. J. Remote Sens. 16, 399–405 (1995). By tracking a large tabular iceberg that calved from Larsen C Ice Shelf with passive microwave imagery, this paper demonstrated how satellite imagery can be used to detect the calving of large, tabular icebergs from Antarctica, and to chart their motion as they drift around the continent.

    ADS  Article  Google Scholar 

  83. 83.

    Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, https://doi.org/10.1029/2006JF000664 (2007).

  84. 84.

    De Angelis, H. & Skvarca, P. Glacier surge after ice shelf collapse. Science 299, 1560–1562 (2003). Although qualitative in nature, this paper was the first to confirm that the disintegration of the Larsen ice shelf triggered increase flow of the grounded ice upstream, by tracking glacial geomorphological features in airborne and satellite imagery.

    ADS  PubMed  Article  CAS  Google Scholar 

  85. 85.

    Rignot, E. J. Fast recession of a West Antarctic glacier. Science 281, 549–551 (1998). As the first study to discover unstable retreat of a West Antarctic glacier in satellite data, this is a landmark paper in glaciology that has triggered widespread scientific interest in the Amundsen Sea sector.

    ADS  PubMed  Article  CAS  Google Scholar 

  86. 86.

    Park, J. W. et al. Sustained retreat of the Pine Island Glacier. Geophys. Res. Lett. 40, 2137–2142 (2013).

    ADS  Article  Google Scholar 

  87. 87.

    Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL034939 (2008).

  88. 88.

    Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).

    ADS  Article  Google Scholar 

  89. 89.

    Joughin, I., Alley, R. B. & Holland, D. M. Ice-sheet response to oceanic forcing. Science 338, 1172–1176 (2012). This review provides a great introduction to ice–ocean interactions, and how satellite observations have informed our understanding of key processes.

    ADS  PubMed  Article  CAS  Google Scholar 

  90. 90.

    Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    ADS  Article  Google Scholar 

  91. 91.

    Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S. & Mosola, A. B. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quat. Sci. Rev. 21, 49–70 (2002).

    ADS  Article  Google Scholar 

  92. 92.

    Joughin, I., Smith, B. E. & Holland, D. M. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL044819 (2010).

  93. 93.

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier basin, West Antarctica. Science 344, 735–738 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  94. 94.

    Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    ADS  Article  Google Scholar 

  95. 95.

    Milillo, P. et al. On the short-term grounding zone dynamics of Pine Island Glacier, West Antarctica, observed with COSMO-SkyMed interferometric data. Geophys. Res. Lett. 44, 10436–10444 (2017).

    ADS  Article  Google Scholar 

  96. 96.

    Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

    ADS  Article  CAS  Google Scholar 

  97. 97.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  98. 98.

    Gloersen, P. et al. Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice, 1978–1987. Ann. Glaciol. 17, 149–154 (1993).

    ADS  Article  Google Scholar 

  99. 99.

    Zwally, H. J., Yi, D., Kwok, R. & Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Oceans 113, https://doi.org/10.1029/2007JC004284 (2008). This study was the first to attempt an extensive assessment of Antarctic sea ice thickness based on satellite altimeter measurements of floe freeboard.

  100. 100.

    Kurtz, N. T. & Markus, T. Satellite observations of Antarctic sea ice thickness and volume. J. Geophys. Res. Oceans 117, https://doi.org/10.1029/2012JC008141 (2012).

  101. 101.

    Heil, P., Fowler, C. W. & Lake, S. E. Antarctic sea-ice velocity as derived from SSM/I imagery. Ann. Glaciol. 44, 361–366 (2006).

    ADS  Article  Google Scholar 

  102. 102.

    Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).

    ADS  Article  CAS  Google Scholar 

  103. 103.

    Brierley, A. S. & Thomas, D. N. in Advances in Marine Biology Vol. 43, 171–276 (Academic Press, 2002).

  104. 104.

    Massom, R. A. et al. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: another factor in ice sheet stability? J. Geophys. Res. Oceans 115, https://doi.org/10.1029/2009JC006083 (2010).

  105. 105.

    Robel, A. A. Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nat. Commun. 8, 14596 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. Cryosphere 11, 427–442 (2017).

    ADS  Article  Google Scholar 

  107. 107.

    Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J. & Phillips, T. Recent changes in Antarctic Sea Ice. Phil. Trans. R. Soc. A 373, https://doi.org/10.1098/rsta.2014.0163 (2015).

  108. 108.

    Armour, K. C. & Bitz, C. M. in US Clivar Variations Vol. 13, 12–19 (2015).

  109. 109.

    Meier, W., Gallaher, D. & Campbell, G. G. New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere 7, 699–705 (2013).

    ADS  Article  Google Scholar 

  110. 110.

    Gallaher, D. W., Campbell, G. G. & Meier, W. N. Anomalous variability in Antarctic sea ice extents during the 1960s with the use of Nimbus data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 881–887 (2014).

    Article  ADS  Google Scholar 

  111. 111.

    de la Mare, W. K. Changes in Antarctic sea-ice extent from direct historical observations and whaling records. Clim. Change 92, 461–493 (2009).

    Article  Google Scholar 

  112. 112.

    Massonnet, F., Guemas, V., Fuèkar, N. S. & Doblas-Reyes, F. J. The 2014 high record of Antarctic sea ice extent. Bull. Am. Meteorol. Soc. 96, S163–S167 (2015).

    Article  Google Scholar 

  113. 113.

    Turner, J. et al. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 44, 6868–6875 (2017).

    ADS  Article  Google Scholar 

  114. 114.

    Stuecker, M. F., Bitz, C. M. & Armour, K. C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett. 44, 9008–9019 (2017).

    ADS  Article  Google Scholar 

  115. 115.

    Zhang, J. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J. Clim. 20, 2515–2529 (2007).

    ADS  Article  Google Scholar 

  116. 116.

    Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change 143, 228–250 (2016).

    ADS  Article  Google Scholar 

  117. 117.

    Kwok, R. & Comiso, J. C. Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Clim. 15, 487–501 (2002).

    ADS  Article  Google Scholar 

  118. 118.

    Stammerjohn, S., Massom, R., Rind, D. & Martinson, D. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, https://doi.org/10.1029/2012GL050874 (2012).

  119. 119.

    Kwok, R., Comiso, J. C., Lee, T. & Holland, P. R. Linked trends in the South Pacific sea ice edge and Southern Oscillation Index. Geophys. Res. Lett. 43, 10295–10302 (2016).

    ADS  Article  Google Scholar 

  120. 120.

    Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nature 547, 275–277 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  121. 121.

    Gloersen, P. Modulation of hemispheric sea-ice cover by ENSO events. Nature 373, 503–506 (1995).

    ADS  Article  Google Scholar 

  122. 122.

    Lefebvre, W., Goosse, H., Timmermann, R. & Fichefet, T. Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res. C 109, https://doi.org/10.1029/2004JC002403 (2004).

  123. 123.

    Holland, M. M., Landrum, L., Kostov, Y. & Marshall, J. Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models. Clim. Dyn. 49, 1813–1831 (2017).

    Article  Google Scholar 

  124. 124.

    Turner, J. et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL037524 (2009).

  125. 125.

    Bintanja, R., Van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    ADS  Article  CAS  Google Scholar 

  126. 126.

    Pauling, A. G., Smith, I. J., Langhorne, P. J. & Bitz, C. M. Time-dependent freshwater input from ice shelves: impacts on Antarctic Sea Ice and the Southern Ocean in an Earth System model. Geophys. Res. Lett. 44, 10454–10461 (2017).

    ADS  Article  Google Scholar 

  127. 127.

    Perovich, D. K. & Richter-Menge, J. A. Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci. 1, 417–441 (2009).

    ADS  Article  Google Scholar 

  128. 128.

    Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans 113, https://doi.org/10.1029/2007JC004257 (2008).

  129. 129.

    Kwok, R. Ross Sea ice motion, area flux, and deformation. J. Clim. 18, 3759–3776 (2005).

    ADS  Article  Google Scholar 

  130. 130.

    Hollands, T., Haid, V., Dierking, W., Timmermann, R. & Ebner, L. Sea ice motion and open water area at the Ronne Polynia, Antarctica: synthetic aperture radar observations versus model results. J. Geophys. Res. Oceans 118, 1940–1954 (2013).

    ADS  Article  Google Scholar 

  131. 131.

    Emery, W. J., Fowler, C. W. & Maslanik, J. A. Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994. Geophys. Res. Lett. 24, 897–900 (1997). This paper is an early application of repeat satellite imagery for tracking the motion on sea ice floes in the polar regions, demonstrating that the Southern Hemisphere sea ice pack tends to drifts northwards under the influence of ocean currents and katabatic winds.

    ADS  Article  CAS  Google Scholar 

  132. 132.

    Kwok, R., Pang, S. S. & Kacimi, S. Sea ice drift in the Southern Ocean: regional patterns, variability, and trends. Elem. Sci. Anth. 5, https://doi.org/10.1525/elementa.226 (2017).

  133. 133.

    Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290–293 (2016).

    ADS  Article  CAS  Google Scholar 

  134. 134.

    Giles, K. A., Laxon, S. W. & Worby, A. P. Antarctic sea ice elevation from satellite radar altimetry. Geophys. Res. Lett. 35, https://doi.org/10.1029/2007GL031572 (2008).

  135. 135.

    Willatt, R. C., Giles, K. A., Laxon, S. W., Stone-Drake, L. & Worby, A. P. Field investigations of Ku-band radar penetration into snow cover on Antarctic sea ice. IEEE Trans. Geosci. Remote Sens. 48, 365–372 (2010).

    ADS  Article  Google Scholar 

  136. 136.

    Tin, T. & Jeffries, M. O. Sea-ice thickness and roughness in the Ross Sea, Antartica. Ann. Glaciol. 33, 187–193 (2001).

    ADS  Article  Google Scholar 

  137. 137.

    Farrell, S. L. et al. Sea-ice freeboard retrieval using digital photon-counting laser altimetry. Ann. Glaciol. 56, 167–174 (2015).

    ADS  Article  Google Scholar 

  138. 138.

    Markus, T. et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens. Environ. 190, 260–273 (2017).

    ADS  Article  Google Scholar 

  139. 139.

    Armitage, T. W. K. & Ridout, A. L. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge. Geophys. Res. Lett. 42, 6724–6731 (2015).

    ADS  Article  Google Scholar 

  140. 140.

    Guerreiro, K., Fleury, S., Zakharova, E., Rémy, F. & Kouraev, A. Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions. Remote Sens. Environ. 186, 339–349 (2016).

    ADS  Article  Google Scholar 

  141. 141.

    Fricker, H. A. & Padman, L. Ice shelf grounding zone structure from ICESat laser altimetry. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL026907 (2006).

  142. 142.

    Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. A. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map. (National Snow and Ice Data Center (NSIDC), Boulder, 2014).

    Google Scholar 

  143. 143.

    Tschudi, M., Fowler, C. W., Maslanik, J. A., Stewart, J. S. & Meier, W. EASE-Grid Sea Ice Age. Version 3. (NASA NSIDC Distributed Active Archive Center, Boulder, 2016).

  144. 144.

    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. K. Sea Ice Index. Version 2 (NSIDC, Boulder, Colorado USA, 2017).

  145. 145.

    Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, https://doi.org/10.1029/2008GC002332 (2009).

  146. 146.

    Timmermann, R. et al. A consistent dataset of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data 2, 261–273, https://doi.org/10.1594/pangea.741917 (2010).

  147. 147.

    Locarnini, R. A. et al. World Ocean Atlas 2009 Vol. 1 Temperature. NOAA Atlas NESDIS 68 (eds Levitus, S.) http://www.nodc.noaa.gov/OC5/indprod.html (US Government Printing Office, Washington DC, 2010).

  148. 148.

    McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).

    ADS  Article  Google Scholar 

  149. 149.

    Anandakrishnan, S. & Alley, R. B. Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Natural Environment Research Council's Centre for Polar Observation and Modelling (cpom300001) and the European Space Agency’s Climate Change Initiative. AS was supported by a Royal Society Wolfson Research Merit award. SLF was supported under NASA grant 80NSSC17K0006 and NOAA grant NA14NES4320003. We thank T. Slater, A. Ridout, and L. Gilbert for their help in preparing Fig. 1 and Fig. 2, and K. Duncan for help in preparing Fig. 4.

Author information

Affiliations

Authors

Contributions

A.S. coordinated the work, and led the review of grounded ice. H.F. led the review of ice shelves and subglacial lakes. S.F. led the review of sea ice.

Corresponding author

Correspondence to Andrew Shepherd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shepherd, A., Fricker, H.A. & Farrell, S.L. Trends and connections across the Antarctic cryosphere. Nature 558, 223–232 (2018). https://doi.org/10.1038/s41586-018-0171-6

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing